Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 3 ⋯ ? 5 ⋯ (?−2)⟩ (?≠5)
⟨⋯ 3 ⋯ ? 0 ⋯ (?+1)⟩ (?≠0)
⟨⋯ 3 ⋯ 1 ⋯⟩
6th → a, 1st → b, a+b=3+5n
⛔Avoid
⟦1,3⟧ ∋ 0
⟨⋯ a ⋯ 0 ⋯⟩, a = 2|4|6
#125034_v2.0
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 2 │ 3 │ │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 3 │ 3 │ 1 │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 4 │ 3 │ 1 │ 0 │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 5 │ 3 │ 1 │ 0 │ │ │ 5 │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 6 │ 3 │ 1 │ 0 │ │ 4 │ 5 │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 7 │ 3 │ 1 │ 0 │ 6 │ 4 │ 5 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ Proof ═════ Notation: if nth -> a, then we write [nth] = a. (1) By ✅【⟨⋯ 3 ⋯ ? 5 ⋯ (?−2)⟩ (?≠5)】 and ✅【⟨⋯ 3 ⋯ ? 0 ⋯ (?+1)⟩ (?≠0)】, we see that [0th] can only be 4 or 2. If [0th]=4, then the ? in ✅【⟨⋯ 3 ⋯ ? 0 ⋯ (?+1)⟩ (?≠0)】 is 3. In view of ✅【⟨⋯ 3 ⋯ 1 ⋯⟩】, we have ⟨⋯ 30 ⋯ 1 ⋯⟩ which matches ⛔「⟦1,3⟧ ∋ 0」. Therefore, we cannot have [0th]=4 in (1). So, [0th]=2. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ │ │ │ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ ------------------------------ Now, we consider where to place 3. By ✅【⟨⋯ 3 ⋯ ? 5 ⋯ (?−2)⟩ (?≠5)】 and ✅【⟨⋯ 3 ⋯ ? 0 ⋯ (?+1)⟩ (?≠0)】, we have (2) ⟨⋯ 3 ⋯ 45 ⋯ 2⟩, and (3) ⟨⋯ 3 ⋯ 10 ⋯ 2⟩, so 3=[6th] or [5th], for otherwise there are not enough places for 4,5,1,0. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ ▬ │ ▬ │ ▬ │ ▬ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ Claim that 3=[6th]. If on the contrary 3=[5th], then 4th, 3rd, 2nd, and 1st are occupied by 4,5,1,0. Consequently, [6th]=6: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 6 │ 3 │ ▬ │ ▬ │ ▬ │ ▬ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ It would match ⛔「⟨⋯ a ⋯ 0 ⋯⟩, a = 2|4|6」, however, which is a contradiction. This verifies our claim. It follows that ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 2 │ 3 │ │ │ │ │ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ ------------------------------ Next, by (2), (3), and ⛔「⟨⋯ a ⋯ 0 ⋯⟩, a = 2|4|6」, we have ⟨3 ⋯ 10 ⋯ 45 ⋯ 2⟩, and ⟨3 ⋯ 10 ⋯ 6 ⋯ 2⟩. In particular, 1 is at the left of 0,4,5,6. Hence, we obtain ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│ 4■│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 3 │ 3 │ 1 │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 4 │ 3 │ 1 │ 0 │ │ │ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ ------------------------------ Using ✅【6th → a, 1st → b, a+b=3+5n】 and (2), we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│ 1■│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 1 │ 0 │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 5 │ 3 │ 1 │ 0 │ │ │ 5 │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 6 │ 3 │ 1 │ 0 │ │ 4 │ 5 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Plainly, we reach ⟨3106452⟩ at the end. This completes the proof. Q.E.D. #125034_v2.0
No comments:
Post a Comment