Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
5th|4th|3rd|0th → 5
4th → a, 1st → b, |a-b|=1
⟨⋯ Perm(2,4,5) ⋯⟩
⟨ ⁵ᵗʰa ²ⁿᵈb ⁰ᵗʰc ⟩, (abc)₁₀ ≤ 341
5th → a, 0th → b, a+b=3+5n
⛔Avoid
⟨⋯ a ⋯ 1 ⋯⟩, a = 0|2|4
#125034_v2.1
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ 3 │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ 3 │ 1 │ │ │ 2 │ │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ 3 │ 1 │ │ 4 │ 2 │ │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 3 │ 1 │ 5 │ 4 │ 2 │ │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 3 │ 1 │ 5 │ 4 │ 2 │ 0 │ └───┴───┴───┴───┴───┴───┘ Proof of 2023-10-25 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. (1) We first consider where to place 1. By ⛔「⟨⋯ a ⋯ 1 ⋯⟩, a = 0|2|4」 and ✅【⟨⋯ Perm(2,4,5) ⋯⟩】, we see that 1 is at the left of 0,2,4,5. Hence, 1=[4th] or [5th]. ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ ▬ │ ▬ │ ▬ │ ▬ │ └───┴───┴───┴───┴───┴───┘ If 1=[5th], then by ✅【5th → a, 0th → b, a+b=3+5n】, we have [0th]=2: ┌───┬───┬───┬───┬───┬───┐ │ 5▲│4th│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 1 │ │ │ * │ * │ 2 │ └───┴───┴───┴───┴───┴───┘ where by ✅【⟨⋯ Perm(2,4,5) ⋯⟩】, the * indicate the positions of 4,5. But then ✅【5th|4th|3rd|0th → 5】 would never be matched, which is a contradiction. Therefore, it follows from (1) that 1=[4th], and {0,2,4,5}= {[3th],[2nd],[1st],[0th]}. Accordingly, we have [5th]=3 as well. ┌───┬───┬───┬───┬───┬───┐ │ 5■│ 4■│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ 3 │ 1 │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ 0 │ │ 4 │ └───┴───┴───┴───┴───┴───┘ ------------------------------ Now, in view of ✅【4th → a, 1st → b, |a-b|=1】, we have [1st]=0 or 2. It cannot be 0, for otherwise there are no 3 consecutive grids available for matching ✅【⟨⋯ Perm(2,4,5) ⋯⟩】: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 1 │ │ │ 0 │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ Therefore, [1st]=2. ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│ 1■│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ 3 │ 1 │ │ │ 2 │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ 5 │ 0 │ │ 4 │ └───┴───┴───┴───┴───┴───┘ ------------------------------ Next, by ✅【5th|4th|3rd|0th → 5】, we have 5=[3th] or [0th]. No matter which holds, by ✅【⟨⋯ Perm(2,4,5) ⋯⟩】 we have [2nd]=4. ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2■│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 1 │ │ │ 2 │ │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ 3 │ 1 │ │ 4 │ 2 │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ 5 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┘ Finally, in view of ✅【⟨ ⁵ᵗʰa ²ⁿᵈb ⁰ᵗʰc ⟩, (abc)₁₀ ≤ 341】, 5 cannot be placed at 0th. As a result, we have ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3■│2nd│1st│ 0■│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 1 │ │ 4 │ 2 │ │ ├───┼───┼───┼───┼───┼───┤ │ 3 │ 1 │ 5 │ 4 │ 2 │ │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 3 │ 1 │ 5 │ 4 │ 2 │ 0 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.1
No comments:
Post a Comment