Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
Jump(2,4) = 1
⟨ ⁵ᵗʰa ⁴ᵗʰb ⟩, (ab)₁₀ ≥ 24
4th → a, 1st → b, a+b=0+5n
⛔Avoid
⟦3,4⟧ ∋ 0
5th|4th|2nd|0th → 4
⟨⋯ 3 ⋯ a ⋯⟩, a = 0|4
#125034_v2.0
WR 2023-10-22
💎💎💎💎✅💎
💎💎✅💎✅💎
💎✅✅💎✅💎
💎✅✅💎✅✅
✅✅✅💎✅✅
✅✅✅✅✅✅
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ │ │ 4 │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ │ │ 2 │ │ 4 │ │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ │ 1 │ 2 │ │ 4 │ │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ │ 1 │ 2 │ │ 4 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 5 │ 1 │ 2 │ │ 4 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 5 │ 1 │ 2 │ 0 │ 4 │ 3 │ └───┴───┴───┴───┴───┴───┘ Proof ═════ Notation: if nth -> a, then we write [nth] = a. (1) By ⛔「5th|4th|2nd|0th → 4」, we have 4=[3rd] or [1st]. We claim that 4=[1st]. Suppose on the contrary 4=[3rd]. Then, by ✅【Jump(2,4) = 1】, either [5th] or [3rd] is 2: ┌───┬───┬───┬───┬───┬───┐ │*5 │4th│ 3▲│2nd│*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ (2) │ x │ │ 4 │ │ y │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ 5 │ 0 │ 3 │ │ └───┴───┴───┴───┴───┴───┘ If x is 2, then by ✅【⟨ ⁵ᵗʰa ⁴ᵗʰb ⟩, (ab)₁₀ ≥ 24】, we need [4th]=5: ┌───┬───┬───┬───┬───┬───┐ │ 5▲│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 5 │ 4 │ │ │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 0 │ 3 │ │ └───┴───┴───┴───┴───┴───┘ and then by ✅【4th → a, 1st → b, a+b=0+5n】, we have ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 5 │ 4 │ │ 0 │ │ └───┴───┴───┴───┴───┴───┘ It is a contradiction, as either ⛔「⟦3,4⟧ ∋ 0」 or ⛔「⟨⋯ 3 ⋯ a ⋯⟩, a = 0|4」 would be matched. So, we need y=2 in (2). By ✅【4th → a, 1st → b, a+b=0+5n】, this implies ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 3 │ 4 │ │ 2 │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ 5 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┘ It then follows from ✅【⟨ ⁵ᵗʰa ⁴ᵗʰb ⟩, (ab)₁₀ ≥ 24】 that ┌───┬───┬───┬───┬───┬───┐ │ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 5 │ 3 │ 4 │ │ 2 │ │ └───┴───┴───┴───┴───┴───┘ It is again a contradiction, as either ⛔「⟦3,4⟧ ∋ 0」 or ⛔「⟨⋯ 3 ⋯ a ⋯⟩, a = 0|4」 would be matched. This verifies our claim in (1). Accordingly, we have ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│ 1■│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 5 │ 0 │ 3 │ │ └───┴───┴───┴───┴───┴───┘ The rest are straightforward. By ✅【Jump(2,4) = 1】 and ✅【4th → a, 1st → b, a+b=0+5n】, we have ┌───┬───┬───┬───┬───┬───┐ │5th│ 4■│ 3■│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ 4 │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ │ │ 2 │ │ 4 │ │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ │ 1 │ 2 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ 5 │ 0 │ 3 │ │ └───┴───┴───┴───┴───┴───┘ By ⛔「⟨⋯ 3 ⋯ a ⋯⟩, a = 0|4」, 3 is at the right of 4, so ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│ 0■│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ 2 │ │ 4 │ │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ │ 1 │ 2 │ │ 4 │ 3 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ 5 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┘ Finally, by ✅【⟨ ⁵ᵗʰa ⁴ᵗʰb ⟩, (ab)₁₀ ≥ 24】, we get [5th]=5. We reach the answer: ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│ 2■│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ 2 │ │ 4 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 5 │ 1 │ 2 │ │ 4 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 5 │ 1 │ 2 │ 0 │ 4 │ 3 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.0
No comments:
Post a Comment