P2 (老羅)
✅Match
max ⊢1⊣ ≤ 3
4th → a, 0th → b, a+b=5
⟨⋯ Perm(0,1,3) ⋯⟩
{p5, p2, p1} = ? + {0,1,2}
⛔Avoid
Sim⟨ ⁵ᵗʰ2 ⁴ᵗʰ4 ³ʳᵈ0 ²ⁿᵈ3 ¹ˢᵗ5 ⁰ᵗʰ1 ⟩ ≥ 1
Last HP: 0
Lowe the Lion defeated 老羅!
#125034_v2.5
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 0 │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 0 │ 1 │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 0 │ 1 │ 2 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 0 │ 1 │ 2 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 0 │ 1 │ 2 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-05-02 M3 ══════════════════════ Notation: if Nth -> a, then we write pN = a. To match ✅「{p5, p2, p1} = ? + {0,1,2}」, we need p5,p2,p1 to be consecutive integers. ┌───┬───┬───┬───┬───┬───┐ │ 5▲│4th│3rd│ 2▲│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ ▬ │ │ │ ▬ │ ▬ │ │ └───┴───┴───┴───┴───┴───┘ On the other hand, by ✅「4th → a, 0th → b, a+b=5」, there are three possibilities of {p4,p0}: (1) {p4,p0} = {2,3}; then p5,p2,p1 ∈ {0,1,4,5}. (2) {p4,p0} = {1,4}; then p5,p2,p1 ∈ {0,2,3,5}. (3) {p4,p0} = {0,5}; then p5,p2,p1 ∈ {1,2,3,4}. ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ ▬ │ / │ │ ▬ │ ▬ │ / │ └───┴───┴───┴───┴───┴───┘ Observe that only case (3) allows p5,p2,p1 to be consecutive integers. So, case (3) holds, and one of the following happens: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ (4) │ ▬ │ 5 │ │ ▬ │ ▬ │ 0 │ ├───┼───┼───┼───┼───┼───┤ (5) │ ▬ │ 0 │ │ ▬ │ ▬ │ 5 │ └───┴───┴───┴───┴───┴───┘ We show that (5) holds actually. ------------------------------ If (4) holds on the contrary, then by ✅「⟨⋯ Perm(0,1,3) ⋯⟩」, we have {p2,p1} = {1,3}: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2▲│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ ▬ │ 5 │ │ - │ - │ 0 │ └───┴───┴───┴───┴───┴───┘ Then, we need p5 = 2 in order that p5,p2,p1 are consecutive integers. This is a contradiction, however, in view of ⛔「Sim⟨ ⁵ᵗʰ2 ⁴ᵗʰ4 ³ʳᵈ0 ²ⁿᵈ3 ¹ˢᵗ5 ⁰ᵗʰ1 ⟩ ≥ 1」. ------------------------------ We have verified that (5) holds. Accordingly, we get ┌───┬───┬───┬───┬───┬───┐ │5th│ 4■│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 0 │ │ │ │ 5 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ Next, we consider how to match ✅「⟨⋯ Perm(0,1,3) ⋯⟩」. We need three adjacent boxes with one of them at 4th. There are two ways to do so: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ (6) │ ■ │ 0 │ ■ │ │ │ 5 │ ├───┼───┼───┼───┼───┼───┤ (7) │ │ 0 │ ■ │ ■ │ │ 5 │ └───┴───┴───┴───┴───┴───┘ No matter which happens, we use the 3rd position. Therefore, (8) p3 = 1|3. We have p3 = 1 actually. For, if on the contraray p3 = 3: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ then we do not have three consecutive integers left for matching ✅「{p5, p2, p1} = ? + {0,1,2}」. So, back to (8), we get: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 0 │ 1 │ │ │ 5 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ We proceed to determine the value of p2. To avoid ⛔「Sim⟨ ⁵ᵗʰ2 ⁴ᵗʰ4 ³ʳᵈ0 ²ⁿᵈ3 ¹ˢᵗ5 ⁰ᵗʰ1 ⟩ ≥ 1」, we need p2 != 3; and to match ✅「max ⊢1⊣ ≤ 3」, we need p2 != 4. It follows that p2 = 2: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ 1 │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 0 │ 1 │ 2 │ │ 5 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ Finally, in view of ✅「⟨⋯ Perm(0,1,3) ⋯⟩」, we finish by ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ 1 │ 2 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 0 │ 1 │ 2 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 0 │ 1 │ 2 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.5
No comments:
Post a Comment