Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ⁶ᵗʰb ⁵ᵗʰa ⁴ᵗʰc ⟩, a > b > c
min ⊢4⊣ = 1
2nd → a, 1st → b, ab=2
⟨ ⁵ᵗʰb ⁴ᵗʰd ³ʳᵈa ²ⁿᵈc ⟩, a > b > c > d
#125034_v2.4
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 0 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 0 │ │ 2 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ 0 │ │ 2 │ 1 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ 0 │ │ 2 │ 1 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ │ 0 │ 6 │ 2 │ 1 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 5 │ 0 │ 6 │ 2 │ 1 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 5 │ 0 │ 6 │ 2 │ 1 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-04-30 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「2nd → a, 1st → b, ab=2」, we have (1) {[2nd],[1st]} = {1,2}. Combining ✅「⟨ ⁵ᵗʰb ⁴ᵗʰd ³ʳᵈa ²ⁿᵈc ⟩, a > b > c > d」 with (1), we have (2) [4th] < [2nd] <= max{[2nd],[1st]} = 2; and (3) [4th] != 1. It follows that [4th] = 0: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 0 │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, observe that ✅「min ⊢4⊣ = 1」 implies 4 is adjacent to 1. Combining this with (1), we have two possibilities: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (4) │ │ │ 0 │ 4 │ 1 │ 2 │ │ ├───┼───┼───┼───┼───┼───┼───┤ (5) │ │ │ 0 │ │ 2 │ 1 │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ Since case (4) contradicts ✅「min ⊢4⊣ = 1」, we see that case (5) holds actually. Accordingly, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│ 1■│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 0 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 0 │ │ 2 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ 0 │ │ 2 │ 1 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ 0 │ │ 2 │ 1 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ We proceed to determine where to place 6. It is the maximum digit, so cannot be the "b" in ✅「⟨ ⁶ᵗʰb ⁵ᵗʰa ⁴ᵗʰc ⟩, a > b > c」 and ✅「⟨ ⁵ᵗʰb ⁴ᵗʰd ³ʳᵈa ²ⁿᵈc ⟩, a > b > c > d」. That is, (6) 6 != [6th] and 6 != [5th]. It follows that 6 = [3rd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 0 │ │ 2 │ 1 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ │ 0 │ 6 │ 2 │ 1 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to match ✅「⟨ ⁶ᵗʰb ⁵ᵗʰa ⁴ᵗʰc ⟩, a > b > c」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 0 │ 6 │ 2 │ 1 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 5 │ 0 │ 6 │ 2 │ 1 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 5 │ 0 │ 6 │ 2 │ 1 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.4
No comments:
Post a Comment