Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
4th → a, 2nd → b, a+b=3
⟦1,5⟧ ∋ 2,3
⟨ ³ʳᵈa ⁰ᵗʰb ⟩, (ab)₁₀ ≥ 51
6th → a, 1st → b, a+b=1+4n
⛔Avoid
1st → 4
----- Information -----
🔲 「4th → a, 2nd → b, a+b=3」
480 permutations match this pattern.
Examples: ⟨0426135⟩, ⟨2135046⟩, ⟨6204351⟩.
🔲 「⟦1,5⟧ ∋ 2,3」
The closed interval given by 1 and 5 contains 2, 3.
840 permutations match this pattern.
Examples: ⟨0413256⟩, ⟨0532461⟩, ⟨1403625⟩.
🔲 「⟨ ³ʳᵈa ⁰ᵗʰb ⟩, (ab)₁₀ ≥ 51」
(ab)₁₀ ∶= 10a + b.
1320 permutations match this pattern.
Examples: ⟨3605241⟩, ⟨4016253⟩, ⟨0216354⟩.
🔲 「6th → a, 1st → b, a+b=1+4n」
[6th] + [1st] = 1 | 5 | 9 | ⋯ .
1440 permutations match this pattern.
Examples: ⟨5021643⟩, ⟨5601243⟩, ⟨6054231⟩.
🔳 「1st → 4」
720 permutations match this pattern.
Examples: ⟨1206345⟩, ⟨2306541⟩, ⟨6132045⟩.
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 2 │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ 2 │ 6 │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 3 │ 2 │ 6 │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 5 │ 3 │ 2 │ 6 │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 5 │ 3 │ 2 │ 6 │ 1 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 5 │ 3 │ 2 │ 6 │ 1 │ 0 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-18 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「4th → a, 2nd → b, a+b=3」, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│*4 │3rd│*2 │1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ X │ │ Y │ │ │ └───┴───┴───┴───┴───┴───┴───┘ (1) where {X,Y} = {0,3} or {1,2}. (2) On the other hand, by ✅「⟨ ³ʳᵈa ⁰ᵗʰb ⟩, (ab)₁₀ ≥ 51」, we have [3rd] = 5 or 6. We claim that [3rd] = 6. ------------------------------ It is proved by contradiction. Suppose on the contrary [3rd] = 5. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ X │ 5 │ Y │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Note that ✅「⟦1,5⟧ ∋ 2,3」 implies 1,5 are not adjacent. Therefore, it follows from (1) that {X,Y} = {0,3}. Combining this with the preceding pattern, there are two possibilities: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (3) │ │ │ 0 │ 5 │ 3 │ 2 │ 1 │ ├───┼───┼───┼───┼───┼───┼───┤ (4) │ 1 │ 2 │ 3 │ 5 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ We cannot match ✅「6th → a, 1st → b, a+b=1+4n」 if it is case (3). In case (4), we need [1st] = 4 to match the preceding pattern, but then we match ⛔「1st → 4」 too, which is a contradiction. ------------------------------ Our claim in (2) is verified. Accordingly ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ X │ 6 │ Y │ │ │ └───┴───┴───┴───┴───┴───┴───┘ (5) Now, we consider whether {X,Y} = {0,3} or {1,2}. We claim that the latter holds actually. ------------------------------ It is again proved by contradiction. If on the contrary {X,Y} = {0,3}, then the idle numbers become --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Observe that to match ✅「6th → a, 1st → b, a+b=1+4n」, namely to satisfy A + B = 1|5|9, A := [6th], B := [1st], we need {A,B} = {1,4} or {4,5}. A fortiori, 4 has to be the value of [6th] or [1st]. Combining this with ⛔「1st → 4」, we find that ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ │ X │ 6 │ Y │ B │ │ └───┴───┴───┴───┴───┴───┴───┘ where B = 1 or 5. Recall that {X,Y} = {0,3} by assumption. So, regardless of B = 1 or 5, we cannot match ✅「⟦1,5⟧ ∋ 2,3」. This shows a contradiction. ------------------------------ Our claim in (5) is thus verified. It means that we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ X │ 6 │ Y │ │ │ └───┴───┴───┴───┴───┴───┴───┘ where {X,Y} = {1,2}. Combining this with ✅「⟦1,5⟧ ∋ 2,3」, there are two possibilities: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│*4 │3rd│*2 │1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (6) │ │ │ 1 │ 6 │ 2 │ 3 │ 5 │ ├───┼───┼───┼───┼───┼───┼───┤ (7) │ 5 │ 3 │ 2 │ 6 │ 1 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ We cannot match ✅「6th → a, 1st → b, a+b=1+4n」 if case (6) holds. So case (7) holds instead. In view of ⛔「1st → 4」, we finish by ⟨5326104⟩. Q.E.D. #125034_v2.2
No comments:
Post a Comment