Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 0 ⋯ 2 ⋯ 3 ⋯⟩
⟦4,5⟧ ∋ 1
⟨⋯ 4 ⋯ 2 ⋯ 1 ⋯⟩
⟨⋯ ? ⋯ 6 ⋯ (?−1)⟩ (?≠6)
⛔Avoid
⟨ ⁶ᵗʰa ⁵ᵗʰb ⁴ᵗʰc ⟩, (abc)₁₀ ≤ 163
1st → a, 0th → b, a+b=8
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 5 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ 2 │ │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ │ 2 │ 1 │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ │ 2 │ 1 │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 0 │ 2 │ 1 │ 5 │ 6 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-17 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. (1) We begin with determining the value of [0th]. We have [0th] = 3, because: (1.1) By ✅「⟨⋯ ? ⋯ 6 ⋯ (?−1)⟩ (?≠6)」, we have [0th] != 6,5; (1.2) By ✅「⟨⋯ 4 ⋯ 2 ⋯ 1 ⋯⟩」, we have [0th] != 4,2; (1.3) By ✅「⟦4,5⟧ ∋ 1」, we have [0th] != 1; (1.4) By ✅「⟨⋯ 0 ⋯ 2 ⋯ 3 ⋯⟩」, we have [0th] != 0. Accordingly, our first step is: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Observe that ✅「⟨⋯ 0 ⋯ 2 ⋯ 3 ⋯⟩」, ✅「⟦4,5⟧ ∋ 1」, and ✅「⟨⋯ 4 ⋯ 2 ⋯ 1 ⋯⟩」 then imply the following patterns: (2) ⟨⋯ 0 ⋯ 2 ⋯ 1 ⋯ 3⟩, and ⟨⋯ 4 ⋯ 2 ⋯ 1 ⋯ 5 ⋯ 3⟩. As a consequence, 5 is at the right of 0,1,2,4, so 5 can only placed at the 2nd or 1st position. Since ⛔「1st → a, 0th → b, a+b=8」 forbids 5 = [1st], we have 5 = [2nd]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 5 │ │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Now, the places at the left of 5 are occupied by 0,1,2,4, so [1st] = 6. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ 5 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ │ 5 │ 6 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Back to (2), we need to match: ⟨⋯ 0 ⋯ 2 ⋯ 1 ⋯⟩, and ⟨⋯ 4 ⋯ 2 ⋯ 1 ⋯⟩, therefore ([4th], [3rd]) = (2,1): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ 2 │ │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ │ 2 │ 1 │ 5 │ 6 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨ ⁶ᵗʰa ⁵ᵗʰb ⁴ᵗʰc ⟩, (abc)₁₀ ≤ 163」, we have [6th] != 0. As a result, we have ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 2 │ 1 │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ │ 2 │ 1 │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 0 │ 2 │ 1 │ 5 │ 6 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment