Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
Jump(1,2) = 1
4th → 1
Jump(2,4) = 2
Jump(3,6) = 1
⛔Avoid
5th|4th|3rd|0th → 6
⟨ ⁵ᵗʰa ¹ˢᵗb ⟩, (ab)₁₀ ≥ 16
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 0 │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ 0 │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ 0 │ 1 │ 4 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 0 │ 1 │ 4 │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 0 │ 1 │ 4 │ 6 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 1 │ 4 │ 6 │ 5 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-11 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, our first step follows from ✅「4th → 1」. Next, to avoid ⛔「⟨ ⁵ᵗʰa ¹ˢᵗb ⟩, (ab)₁₀ ≥ 16」, we need [5th] <= 1, so [5th] = 0. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 0 │ 1 │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ By ✅「Jump(1,2) = 1」, we have 2 = [6th] or [2rd]. The latter does not hold, for otherwise there is no way to match ✅「Jump(2,4) = 2」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ 1 │ │ 2 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Consequently, we have 2 = [6th]. Then, using ✅「Jump(2,4) = 2」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ 0 │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ 0 │ 1 │ 4 │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Note that ✅「Jump(3,6) = 1」 implies {3,6} = {[2nd], [0th]}. Therefore, 5 = [1st]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 4 │ 2 │ 0 │ 1 │ 4 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 0 │ 1 │ 4 │ │ 5 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Lastly, to avoid ⛔「5th|4th|3rd|0th → 6」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ 0 │ 1 │ 4 │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 0 │ 1 │ 4 │ 6 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 1 │ 4 │ 6 │ 5 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment