Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨? ⋯ 1 (?+2) ⋯ 2 ⋯⟩ (?≠1)
Jump(4,5) = 2
⟨ ⁶ᵗʰa ¹ˢᵗb ⟩, (ab)₁₀ ≥ 13
6th|5th|4th|2nd|0th → 6
⛔Avoid
⟦2,4⟧ ∋ 1
5th → a, 2nd → b, a+b=2+4n
2nd → a, 1st → b, a+b=10
⟨? ⋯ 2 ⋯ (?−3) ⋯⟩ (?≠5)
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 3 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 3 │ 1 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ 1 │ 5 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 1 │ 5 │ │ │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 1 │ 5 │ │ │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 1 │ 5 │ 0 │ │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 1 │ 5 │ 0 │ 2 │ 4 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-10 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. We begin with determining the value of [6th]. By ✅「⟨? ⋯ 1 (?+2) ⋯ 2 ⋯⟩ (?≠1)」, we have [6th] = 0|3|4. If [6th] = 4, then the preceding pattern becomes: ⟨4 ⋯ 16 ⋯ 2 ⋯⟩ Matching it would be a contradiction, however, as we need to avoid ⛔「⟦2,4⟧ ∋ 1」. Hence, [6th] = 0|3. To match ✅「⟨ ⁶ᵗʰa ¹ˢᵗb ⟩, (ab)₁₀ ≥ 13」, we nedd [6th] >= 1, thus [6th] = 3. ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 3 │ │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Now, note that to avoid ⛔「⟨? ⋯ 2 ⋯ (?−3) ⋯⟩ (?≠5)」, we need to match: (1) ⟨3 ⋯ 0 ⋯ 2 ⋯⟩ Also, note that ✅「⟨? ⋯ 1 (?+2) ⋯ 2 ⋯⟩ (?≠1)」 becomes: (2) ⟨3 ⋯ 15 ⋯ 2 ⋯⟩ In particular, 1,5 are adjacent to each other in this order. To match (2), there are four possibilities: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (2.1) │ 3 │ 1 │ 5 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ (2.2) │ 3 │ │ 1 │ 5 │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ (2.3) │ 3 │ │ │ 1 │ 5 │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ (2.4) │ 3 │ │ │ │ 1 │ 5 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ We proceed to show that (2.1) holds actually. ------------------------------ Case (2.2): If (2.2) holds, then by ✅「Jump(4,5) = 2」, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│*4 │*3 │2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ │ 1 │ 5 │ │ │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ If 0 is at 5th or 2nd, then we would match ⛔「5th → a, 2nd → b, a+b=2+4n」. Hence, 0 = [1st]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ │ 1 │ 5 │ │ 0 │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ This results in a contradiction, however, as we cannot match (1) now. Case (2.3): If (2.3) holds, then by ✅「Jump(4,5) = 2」, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│*3 │*2 │1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 4 │ │ 1 │ 5 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ But then to match (2) we would match ⛔「⟦2,4⟧ ∋ 1」 too, which is a contradiction. Case (2.4): If (2.4) holds: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│*2 │*1 │*0 │ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ │ │ │ 1 │ 5 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ then unavoidably we would match ⛔「⟦2,4⟧ ∋ 1」. ------------------------------ We have verified that (2.1) holds indeed. Combining it with ✅「Jump(4,5) = 2」, we obtain ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│ 4■│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 3 │ 1 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ 1 │ 5 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 1 │ 5 │ │ │ 4 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Now we consider where to place 6. By ✅「6th|5th|4th|2nd|0th → 6」, we see that 6 = [2nd] or [0th]. To avoid ⛔「2nd → a, 1st → b, a+b=10」, we need 6 = [0th]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 1 │ 5 │ │ │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 1 │ 5 │ │ │ 4 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, recall that we need to match (1). We finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 1 │ 5 │ │ │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 1 │ 5 │ 0 │ │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 1 │ 5 │ 0 │ 2 │ 4 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment