Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 0 ⋯ ? 2 ⋯ (?−1)⟩ (?≠2,3)
⟦0,1⟧ ∋ 2,3
⛔Avoid
Sim⟨ ⁵ᵗʰ2 ⁴ᵗʰ0 ³ʳᵈ4 ²ⁿᵈ3 ¹ˢᵗ5 ⁰ᵗʰ1 ⟩ ≥ 1
#125034_v2.1
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
Step 1 │ │ │ │ │ │ 4 │
├───┼───┼───┼───┼───┼───┤
Step 2 │ 0 │ │ │ │ │ 4 │
├───┼───┼───┼───┼───┼───┤
Step 3 │ 0 │ │ │ │ 1 │ 4 │
├───┼───┼───┼───┼───┼───┤
Step 4 │ 0 │ │ 5 │ │ 1 │ 4 │
├───┼───┼───┼───┼───┼───┤
Step 5 │ 0 │ │ 5 │ 2 │ 1 │ 4 │
├───┼───┼───┼───┼───┼───┤
Step 6 │ 0 │ 3 │ 5 │ 2 │ 1 │ 4 │
└───┴───┴───┴───┴───┴───┘
Proof of 2023-11-07 WR
══════════════════════
Notation: if nth -> a, then we write [nth] = a.
We first determine the value of "?" in ✅【⟨⋯ 0 ⋯ ? 2 ⋯ (?−1)⟩ (?≠2,3)】. We need ?>=1, so ? = 5|4|1. It is not 1 since this pattern implies 0 != [0th], and it is not 4, for otherwise 3 = ?-1 is in corners, which contradicts ✅【⟦0,1⟧ ∋ 2,3】. Therefore, ? = 5, and this pattern becomes
(1) ⟨⋯ 0 ⋯ 5 2 ⋯ 4⟩
Accordingly, our first step is
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│ 0■│
╞═══╪═══╪═══╪═══╪═══╪═══╡
Step 1 │ │ │ │ │ │ 4 │
└───┴───┴───┴───┴───┴───┘
--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │ 0 │ 3 │ │
└───┴───┴───┴───┴───┴───┘
Next, note that (1) and ✅【⟦0,1⟧ ∋ 2,3】 imply
(2) ⟨⋯ 0 ⋯ 5 2 ⋯ 1 ⋯⟩, and
(3) ⟨⋯ 0 ⋯ 3 ⋯ 1 ⋯⟩.
To match (2) and (3), we need [5th] = 0 and [1st] = 1:
┌───┬───┬───┬───┬───┬───┐
│ 5■│4th│3rd│2nd│ 1■│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ │ │ │ │ │ 4 │
├───┼───┼───┼───┼───┼───┤
Step 2 │ 0 │ │ │ │ │ 4 │
├───┼───┼───┼───┼───┼───┤
Step 3 │ 0 │ │ │ │ 1 │ 4 │
└───┴───┴───┴───┴───┴───┘
--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ │ 2 │ 5 │ │ 3 │ │
└───┴───┴───┴───┴───┴───┘
There are two ways to arrange 5,2 so that (2) is matched:
┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│ 3▲│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
(4) │ 0 │ 5 │ 2 │ │ 1 │ 4 │
├───┼───┼───┼───┼───┼───┤
(5) │ 0 │ │ 5 │ 2 │ 1 │ 4 │
└───┴───┴───┴───┴───┴───┘
If it is (4), then [2nd] = 3, which contradicts ⛔「Sim⟨ ⁵ᵗʰ2 ⁴ᵗʰ0 ³ʳᵈ4 ²ⁿᵈ3 ¹ˢᵗ5 ⁰ᵗʰ1 ⟩ ≥ 1」. Therefore, it is (5) and we obtain ⟨035214⟩.
Q.E.D.
#125034_v2.1