Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 0 ⋯ ? 2 ⋯ (?−1)⟩ (?≠2,3)
⟦0,1⟧ ∋ 2,3
⛔Avoid
Sim⟨ ⁵ᵗʰ2 ⁴ᵗʰ0 ³ʳᵈ4 ²ⁿᵈ3 ¹ˢᵗ5 ⁰ᵗʰ1 ⟩ ≥ 1
#125034_v2.1
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ │ │ │ 4 │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ 0 │ │ │ │ │ 4 │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ 0 │ │ │ │ 1 │ 4 │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ 0 │ │ 5 │ │ 1 │ 4 │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 0 │ │ 5 │ 2 │ 1 │ 4 │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 0 │ 3 │ 5 │ 2 │ 1 │ 4 │ └───┴───┴───┴───┴───┴───┘ Proof of 2023-11-07 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. We first determine the value of "?" in ✅【⟨⋯ 0 ⋯ ? 2 ⋯ (?−1)⟩ (?≠2,3)】. We need ?>=1, so ? = 5|4|1. It is not 1 since this pattern implies 0 != [0th], and it is not 4, for otherwise 3 = ?-1 is in corners, which contradicts ✅【⟦0,1⟧ ∋ 2,3】. Therefore, ? = 5, and this pattern becomes (1) ⟨⋯ 0 ⋯ 5 2 ⋯ 4⟩ Accordingly, our first step is ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│ 0■│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 5 │ 0 │ 3 │ │ └───┴───┴───┴───┴───┴───┘ Next, note that (1) and ✅【⟦0,1⟧ ∋ 2,3】 imply (2) ⟨⋯ 0 ⋯ 5 2 ⋯ 1 ⋯⟩, and (3) ⟨⋯ 0 ⋯ 3 ⋯ 1 ⋯⟩. To match (2) and (3), we need [5th] = 0 and [1st] = 1: ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│2nd│ 1■│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ │ 4 │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ 0 │ │ │ │ │ 4 │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ 0 │ │ │ │ 1 │ 4 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ │ 3 │ │ └───┴───┴───┴───┴───┴───┘ There are two ways to arrange 5,2 so that (2) is matched: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│ 3▲│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ (4) │ 0 │ 5 │ 2 │ │ 1 │ 4 │ ├───┼───┼───┼───┼───┼───┤ (5) │ 0 │ │ 5 │ 2 │ 1 │ 4 │ └───┴───┴───┴───┴───┴───┘ If it is (4), then [2nd] = 3, which contradicts ⛔「Sim⟨ ⁵ᵗʰ2 ⁴ᵗʰ0 ³ʳᵈ4 ²ⁿᵈ3 ¹ˢᵗ5 ⁰ᵗʰ1 ⟩ ≥ 1」. Therefore, it is (5) and we obtain ⟨035214⟩. Q.E.D. #125034_v2.1
No comments:
Post a Comment