Web link

2023-11-05 Q1(m=6)

Rearrange the digits in ⟨1263045⟩ to meet the rules below.

⟨6th 5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩
⟦1,4⟧ ∋ 0
Jump(1,5) ≥ 2
⟦3,4⟧ ∋ 2
Jump(4,6) = 2

⛔Avoid
3rd → a, 0th → b, |a-b|=5
⟨⋯ 0 ⋯ 6 ⋯ 3 ⋯⟩

#125034_v2.1



       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│0th│
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
Step 1 │   │   │ 4 │   │   │   │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 2 │   │   │ 4 │   │   │ 6 │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 3 │ 3 │   │ 4 │   │   │ 6 │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 4 │ 3 │ 2 │ 4 │   │   │ 6 │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 5 │ 3 │ 2 │ 4 │ 5 │   │ 6 │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 6 │ 3 │ 2 │ 4 │ 5 │   │ 6 │ 1 │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 7 │ 3 │ 2 │ 4 │ 5 │ 0 │ 6 │ 1 │
       └───┴───┴───┴───┴───┴───┴───┘

Proof of 2023-11-05 Q1(m=6)
═══════════════════════════

Notation: if nth -> a, then we write [nth] = a.

(1) Firstly, we consider where to put 4. We claim that it is put at the "↓" or "=" positions of ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】.

------------------------------

For, suppose on the contrary 4 is put at the "↑" positions, i.e. 5th, 2nd or 0th. If 4 = [5th] or [2nd], then by ✅【Jump(4,6) = 2】, we have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5▲│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 4 │   │   │ 6 │   │   │
├───┼───┼───┼───┼───┼───┼───┤
│   │ 6 │   │   │ 4 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

so that 6 is always put at a "↑" position of ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】, which is a contradiction. Therefore, we need 4 = [0th] if it is put at a "↑" position. Using ✅【Jump(4,6) = 2】 then, it follows that

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │ 6 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 3 │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

To match ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】, we need [6th] > [0th] = 4. Therefore, [6th] = 5.

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │   │   │ 6 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

By ✅【Jump(1,5) ≥ 2】, we need 1 = [2nd] or [1st]. As ✅【⟦1,4⟧ ∋ 0】 implies that 1 and 4 are not adjacent, we have 1 = [2nd]. Accordingly

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│ 2▲│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │   │   │ 6 │ 1 │   │ 4 │
├───┼───┼───┼───┼───┼───┼───┤
│ 5 │   │   │ 6 │ 1 │ 0 │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

But now 0 is at a "↓" position of ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】, which is a contradiction.

------------------------------

We have verified our claim in (1). There remain four possible positions for 4:

    ┌───┬───┬───┬───┬───┬───┬───┐
    │6th│5th│4th│3rd│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
(2) │   │ / │   │   │ / │   │ / │
    └───┴───┴───┴───┴───┴───┴───┘

(3) Before proceeding, we make the following observation. By ✅【⟦1,4⟧ ∋ 0】 and ✅【⟦3,4⟧ ∋ 2】, if both 1 and 3 are on the left hand side of 4, then all of 1,3,0,2 are on the left hand side of 4. Similar argument applies for the case both 1 and 3 are on the right hand side of 4.

We now claim that indeed 4 = [4th].

------------------------------

(4) If 4 = [1st], then using ✅【Jump(4,6) = 2】, ✅【⟦1,4⟧ ∋ 0】, ✅【⟦3,4⟧ ∋ 2】, and (3), we have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4▲│3rd│2nd│ 1▲│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 6 │   │   │ 4 │   │
├───┼───┼───┼───┼───┼───┼───┤
│ - │ - │ 6 │ - │ - │ 4 │   │
├───┼───┼───┼───┼───┼───┼───┤
│ - │ - │ 6 │ - │ - │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

where the "-" indicate the positions of 1,3,0,2. But then [0th] = 5 is in a "↑" position of ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】, which is a contradiction as 5 can only increase by using 6.

(5) Else, if 4 = [3rd], then using ✅【Jump(4,6) = 2】 and putting 6 at a "↓" position of ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】, we have

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 6 │   │   │ 4 │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

By (3), we see that ✅【⟦1,4⟧ ∋ 0】 and ✅【⟦3,4⟧ ∋ 2】 can only be satisfied using both sides of 4. Since 0 cannot be put at a "↓" position of ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】, we have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5▲│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 6 │ 3 │ 2 │ 4 │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │   │   │   │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

But then ✅【Jump(1,5) ≥ 2】 cannot be matched.

(6) Else, if 4 = [6th], then ✅【Jump(4,6) = 2】 gives

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 4 │   │   │ 6 │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

If 0 is at the left hand side of 6, then to match ✅【⟦3,4⟧ ∋ 2】 we unavoidably would match ⛔「⟨⋯ 0 ⋯ 6 ⋯ 3 ⋯⟩」. Hence, 0 is at the right hand side of 6. As ✅【⟦1,4⟧ ∋ 0】 implies that 0 is not at corners, and that 0 cannot be put at a "↓" positions of ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】, we have 0 = [2nd].

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 4 │   │   │ 6 │ 0 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

To match ✅【⟦1,4⟧ ∋ 0】 and avoid ⛔「3rd → a, 0th → b, |a-b|=5」 at the same time, we have 1 = [1st].

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 4 │   │   │ 6 │ 0 │ 1 │   │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │   │ 3 │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

It would contradict ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】, however, because 1 can only decrease by using 0.

------------------------------

Combining (2),(4),(5),(6), at last we get our first step that 4 = [4th]. Using ✅【Jump(4,6) = 2】 then, we have

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│ 4■│3rd│2nd│ 1■│0th│
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
Step 1 │   │   │ 4 │   │   │   │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 2 │   │   │ 4 │   │   │ 6 │   │
       └───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 3 │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

By ✅【⟦1,4⟧ ∋ 0】, ✅【⟦3,4⟧ ∋ 2】, and (3), we see that there are two cases for (a,b) := ([6th], [5th]):

(i) (a,b) = (1,0)
(ii) (a,b) = (3,2)

(7) We claim that case (i) is not possible.

------------------------------

For, if on the contrary case (i) holds, then we have

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 1 │ 0 │ 4 │   │   │ 6 │   │
└───┴───┴───┴───┴───┴───┴───┘

It would never match ✅【⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↑ ⁴ᵗʰ↓ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after ⟨⇌⟩】, however, as 1 can only decrease by using 0.

------------------------------

We have verified our claim in (7). Consequently, we obtain

       ┌───┬───┬───┬───┬───┬───┬───┐
       │ 6■│ 5■│4th│3rd│2nd│1st│0th│
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
       │   │   │ 4 │   │   │ 6 │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 3 │ 3 │   │ 4 │   │   │ 6 │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 4 │ 3 │ 2 │ 4 │   │   │ 6 │   │
       └───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │   │   │   │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Now, to match ✅【Jump(1,5) ≥ 2】, we need {1,5} = {[3rd], [0th]}. But 1 cannot be adjacent to 4 by ✅【⟦1,4⟧ ∋ 0】. As a result, we reach

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│ 3■│ 2■│1st│ 0■│
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
       │ 3 │ 2 │ 4 │   │   │ 6 │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 5 │ 3 │ 2 │ 4 │ 5 │   │ 6 │   │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 6 │ 3 │ 2 │ 4 │ 5 │   │ 6 │ 1 │
       ├───┼───┼───┼───┼───┼───┼───┤
Step 7 │ 3 │ 2 │ 4 │ 5 │ 0 │ 6 │ 1 │
       └───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.1

No comments:

Post a Comment