Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
3rd → a, 0th → b, |a-b|=3
2nd → a, 0th → b, ab=3+5n
⟨⋯ a ⋯ 1 ⋯⟩, a = 0|2|5
⟨ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ↓ ²ⁿᵈ↓ ¹ˢᵗ↑ ⁰ᵗʰ= ⟩ after 5−⟨⇌⟩
#125034_v2.1
2023-10-31 WR
✅🚧🚧🚧🚧🚧
✅🚧🚧🚧🚧✅
✅🚧✅🚧🚧✅
✅🚧✅✅🚧✅
✅🚧✅✅✅✅
✅✅✅✅✅✅
#125034_v2.1
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ 3 │ │ │ │ │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ 3 │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ 3 │ │ 5 │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ 3 │ │ 5 │ 4 │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 3 │ │ 5 │ 4 │ 1 │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 3 │ 0 │ 5 │ 4 │ 1 │ 2 │ └───┴───┴───┴───┴───┴───┘ Proof of 2023-10-31 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. Let x := [5th] and y := [0th]. By considering the "=" positions of ✅【⟨ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ↓ ²ⁿᵈ↓ ¹ˢᵗ↑ ⁰ᵗʰ= ⟩ after 5−⟨⇌⟩】, we have three possibilities for {x,y}: (i) {5,0} (ii) {4,1} (iii) {3,2} We claim that case (iii) holds. ------------------------------ Indeed, note that by ✅【2nd → a, 0th → b, ab=3+5n】, we have y ≠ 5 and y ≠ 0. Therefore, case (i) does not hold. Else if case (ii) holds, then as ✅【⟨⋯ a ⋯ 1 ⋯⟩, a = 0|2|5】 implies that 1 ≠ [5th], we have (x,y) = (4,1). But then ✅【3rd → a, 0th → b, |a-b|=3】 would never be matched. ┌───┬───┬───┬───┬───┬───┐ │ 5▲│4th│ 3▲│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ │ * │ │ │ 1 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ 0 │ 3 │ │ └───┴───┴───┴───┴───┴───┘ ------------------------------ We have verified that case (iii) holds. Next, we determine whether (x,y) = (2,3) or (3,2). If the former holds, then it follows from ✅【3rd → a, 0th → b, |a-b|=3】 that [3rd] = 0: ┌───┬───┬───┬───┬───┬───┐ │ 5▲│4th│ 3▲│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ 0 │ │ │ 3 │ └───┴───┴───┴───┴───┴───┘ It is a contradiction, because by ✅【⟨ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ↓ ²ⁿᵈ↓ ¹ˢᵗ↑ ⁰ᵗʰ= ⟩ after 5−⟨⇌⟩】, [3rd] can decrease. Therefore, we have (x,y) = (3,2). ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│2nd│1st│ 0■│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ 3 │ │ │ │ │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ 3 │ │ │ │ │ 2 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ 5 │ 0 │ │ 4 │ └───┴───┴───┴───┴───┴───┘ ------------------------------ The rest are straightforward. By ✅【3rd → a, 0th → b, |a-b|=3】 and ✅【2nd → a, 0th → b, ab=3+5n】, we have ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3■│ 2■│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ 3 │ │ 5 │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ 3 │ │ 5 │ 4 │ │ 2 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┘ As ✅【⟨⋯ a ⋯ 1 ⋯⟩, a = 0|2|5】 implies that 1 ≠ [4th], we reach ┌───┬───┬───┬───┬───┬───┐ │5th│ 4■│3rd│2nd│ 1■│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ │ 5 │ 4 │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 3 │ │ 5 │ 4 │ 1 │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 3 │ 0 │ 5 │ 4 │ 1 │ 2 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.1
No comments:
Post a Comment