Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
6th → a, 5th → b, a+b=5
Jump(0,6) = 0
⟨⋯ Perm(4,5,6) ⋯⟩
⟨⋯ 2 ⋯ ? 1 ⋯ (?−2)⟩ (?≠3)
⛔Avoid
⟨? ⋯ 1 (?+2) ⋯ 0 ⋯⟩ (?≠1)
#125034_v2.1
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 2 │ 3 │ │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 3 │ 3 │ 2 │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 4 │ 3 │ 2 │ 1 │ │ │ │ 0 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 5 │ 3 │ 2 │ 1 │ │ │ 6 │ 0 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 6 │ 3 │ 2 │ 1 │ │ 5 │ 6 │ 0 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 7 │ 3 │ 2 │ 1 │ 4 │ 5 │ 6 │ 0 │ └───┴───┴───┴───┴───┴───┴───┘ Proof of 2023-10-31 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Let a := [6th] and b := [5th]. ✅【6th → a, 5th → b, a+b=5】 implies that there are three possibilities of {a,b}: (i) {5,0} (ii) {4,1} (iii) {3,2} We claim that case (i) and (ii) are not possible. ------------------------------ Suppose otherwise that case (i) holds. If (a,b) = (5,0), then ✅【⟨⋯ Perm(4,5,6) ⋯⟩】 cannot be matched; else if (a,b) = (0,5), then ✅【Jump(0,6) = 0】 cannot be matched. Hence, it is a contradiction. Else, suppose case (ii) holds. If (a,b) =(4,1), then ✅【⟨⋯ Perm(4,5,6) ⋯⟩】 cannot be matched; else if (a,b) = (1,4), then ✅【⟨⋯ 2 ⋯ ? 1 ⋯ (?−2)⟩ (?≠3)】 cannot be matched. Therefore, it is also a contradiction. ------------------------------ It follows that case (iii) holds. In addition, noting that ✅【Jump(0,6) = 0】 and ✅【⟨⋯ Perm(4,5,6) ⋯⟩】 imply 0,4,5,6 are adjacent to each other, we have two situations: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (1) │ a │ b │ / │ / │ / │ / │ │ ├───┼───┼───┼───┼───┼───┼───┤ (2) │ a │ b │ │ / │ / │ / │ / │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ where {a,b} = {3,2} and the "/" are occupied by 0,4,5,6. We need to match ✅【⟨⋯ 2 ⋯ ? 1 ⋯ (?−2)⟩ (?≠3)】. A fortiori, 1 != [0th]. It follows that (1) is impossible and we have [4th] = 1 as our first step: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ 1 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ ------------------------------ Next, we consider whether (a,b) = (3,2) or (2,3). If the latter holds, then the "?" in ✅【⟨⋯ 2 ⋯ ? 1 ⋯ (?−2)⟩ (?≠3)】 is 3 and [0th] = 1, which is a contradiction. Hence, we have (a,b) = (3,2). ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│ 5■│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 2 │ 3 │ │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 3 │ 3 │ 2 │ 1 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Accordingly, the "?" in ✅【⟨⋯ 2 ⋯ ? 1 ⋯ (?−2)⟩ (?≠3)】 is 2, so [0th] = 0. Using ✅【Jump(0,6) = 0】 too, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│ 0■│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 2 │ 1 │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 4 │ 3 │ 2 │ 1 │ │ │ │ 0 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 5 │ 3 │ 2 │ 1 │ │ │ 6 │ 0 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, ⛔「⟨? ⋯ 1 (?+2) ⋯ 0 ⋯⟩ (?≠1)」 requires that 5 is not next to 1. So, we reach ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│ 2■│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 2 │ 1 │ │ │ 6 │ 0 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 6 │ 3 │ 2 │ 1 │ │ 5 │ 6 │ 0 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 7 │ 3 │ 2 │ 1 │ 4 │ 5 │ 6 │ 0 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.1
No comments:
Post a Comment