Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨ ⁵ᵗʰ▨ ⁴ᵗʰ▨ ³ʳᵈ▨ ²ⁿᵈ▨ ¹ˢᵗ▨ ⁰ᵗʰ▨ ⟩
✅Match
⟨⋯ ᵃb ⋯⟩, |a-b|=0
⟨⋯ 3 ⋯ 4 ⋯⟩
min ⊢3⊣ = 2
⛔Avoid
⟨⋯ 2 ⋯ a ⋯⟩, a = 1|3
5th → a, 1st → b, a+b=0+5n
#125034_v2.12
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ 5 │ │ │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 2 │ │ 5 │ 3 │ │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 3 │ │ 5 │ 3 │ 2 │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │ 5 │ 3 │ 2 │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │ 5 │ 3 │ 2 │ │ 4 │▒
├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 5 │ 3 │ 2 │ 0 │ 4 │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
Proof of 2026-02-17 WR
══════════════════════
Notation: if nth -> a, then we write [nth] = a.
By ✅「min ⊢3⊣ = 2」, we see that 2 and 3 are adjacent. Combining this with ⛔「⟨⋯ 2 ⋯ a ⋯⟩, a = 1|3」, we have to match the following pattern:
(1) ⟨⋯ 1 ⋯ 3 2 ⋯⟩.
To match ✅「min ⊢3⊣ = 2」, the digit adjacent to and to the left of 3 can only be 4 or 5. In view of ✅「⟨⋯ 3 ⋯ 4 ⋯⟩」, it is 5 indeed. Accordingly, we have to match
(2) ⟨⋯ 1 ⋯ 5 3 2 ⋯ 4 ⋯⟩.
There are two ways to match (2):
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
(3.1) │ │ │ 5 │ 3 │ 2 │ 4 │
├───┼───┼───┼───┼───┼───┤
(3.2) │ 1 │ 5 │ 3 │ 2 │ │ │
└───┴───┴───┴───┴───┴───┘
Note that if (3.1) holds, then we cannot match ✅「⟨⋯ ᵃb ⋯⟩, |a-b|=0」. Therefore, (3.2) holds.
Finally, to avoid ⛔「5th → a, 1st → b, a+b=0+5n」, we finish by ⟨153204⟩.
Q.E.D.
#125034_v2.12