Web link

2025-12-30 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨ ⁵ᵗʰ▨ ⁴ᵗʰ▨ ³ʳᵈ▨ ²ⁿᵈ▨ ¹ˢᵗ▨ ⁰ᵗʰ▨ ⟩

✅Match
3rd|2nd → 3
Jump(2,4) = 1
⟦1,5⟧ ∋ 0,2

⛔Avoid
⟨ ⁵ᵗʰa   ³ʳᵈb       ⟩, a > b
0th → 0|2|5

#125034_v2.11


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 1 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 1 │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 1 │   │   │ 2 │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │   │ 3 │ 2 │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │   │ 3 │ 2 │ 5 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 0 │ 3 │ 2 │ 5 │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-12-30 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

Firstly, we consider what [5th] is.

• By ✅「3rd|2nd → 3」, it is not 3.
• By ✅「⟦1,5⟧ ∋ 0,2」, it is not 0 or 2.
• By ⛔「⟨ ⁵ᵗʰa   ³ʳᵈb       ⟩, a > b」, it is not 5.

Therefore,

(1) [5th] = 1 or 4.

------------------------------

If [5th] = 4, then to avoid ⛔「⟨ ⁵ᵗʰa   ³ʳᵈb       ⟩, a > b」, we need

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 4 │   │ 5 │   │   │   │
└───┴───┴───┴───┴───┴───┘

Then, in view of ✅「⟦1,5⟧ ∋ 0,2」, we have

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│ 1▲│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 4 │   │ 5 │0 2│0 2│ 1 │
└───┴───┴───┴───┴───┴───┘

We just failed to match ✅「3rd|2nd → 3」, which is a contradiction.

------------------------------

Consequently, it follows from (1) that [5th] = 1:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 1 │   │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Next, we determine the value of [0th]. Combining ⛔「0th → 0|2|5」 with ✅「3rd|2nd → 3」, we see that it is 4:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 1 │   │   │   │   │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Then, using ✅「Jump(2,4) = 1」 and ✅「3rd|2nd → 3」 respectively, we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 1 │   │   │ 2 │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │   │ 3 │ 2 │   │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

Finally, to match ✅「⟦1,5⟧ ∋ 0,2」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │   │ 3 │ 2 │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │   │ 3 │ 2 │ 5 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 0 │ 3 │ 2 │ 5 │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.11