Web link

2025-12-02 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨ ⁵ᵗʰ▨ ⁴ᵗʰ▨ ³ʳᵈ▨ ²ⁿᵈ▨ ¹ˢᵗ▨ ⁰ᵗʰ▨ ⟩

✅Match
Jump(1,2) = 1
2nd → a, 1st → b, |a-b|=4
⟨⋯ 1 ⋯ 5 ⋯ 4 ⋯⟩

⛔Avoid
4th|2nd|1st|0th → 2
⟨ ⁵ᵗʰc   ³ʳᵈb   ¹ˢᵗa   ⟩, a > b > c

#125034_v2.11



       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 1 │   │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 1 │ 5 │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │ 5 │ 2 │   │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │ 5 │ 2 │ 4 │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 5 │ 2 │ 4 │ 0 │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-12-02 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

By ⛔「4th|2nd|1st|0th → 2」, we have 

(1) 2 = [5th] or [3rd].

(1.1) We show that 2 = [3rd].

------------------------------

For, suppose on the contrary 2 = [5th]:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Then by ✅「Jump(1,2) = 1」, we have

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │   │ 1 │   │   │   │
└───┴───┴───┴───┴───┴───┘

To match ✅「2nd → a, 1st → b, |a-b|=4」, we need

(2) { [2nd], [1st] } = {0,4}.

But having (2), we will fail to match ✅「⟨⋯ 1 ⋯ 5 ⋯ 4 ⋯⟩」, which is a contradiction.

------------------------------

We have verified (1.1). Accordingly, we get 2 = [3rd]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │ 2 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「Jump(1,2) = 1」, there are two possibilities:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 1 │   │ 2 │   │ 1 │   │
└───┴───┴───┴───┴───┴───┘

If 1 = [1st], then we cannot match ✅「⟨⋯ 1 ⋯ 5 ⋯ 4 ⋯⟩」. Therefore, 1 = [5th]:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 1 │   │ 2 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「2nd → a, 1st → b, |a-b|=4」, we need

(3) { [2nd], [1st] } = {0,4}.

Since 5 is to the left of 4 by ✅「⟨⋯ 1 ⋯ 5 ⋯ 4 ⋯⟩」, we get 5 = [4th]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │   │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 1 │ 5 │ 2 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Note that (3) now implies [0th] = 3:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │ 5 │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │ 5 │ 2 │   │   │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │ 0 │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨ ⁵ᵗʰc   ³ʳᵈb   ¹ˢᵗa   ⟩, a > b > c」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │ 5 │ 2 │   │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
       │ 1 │ 5 │ 2 │ 4 │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 5 │ 2 │ 4 │ 0 │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.11