Web link

2025-11-18 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨ ⁵ᵗʰ▨ ⁴ᵗʰ▨ ³ʳᵈ▨ ²ⁿᵈ▨ ¹ˢᵗ▨ ⁰ᵗʰ▨ ⟩

✅Match
⟨ − ▧ ▧ − ▢ ▢ ⟩, Σ▧ = Σ▢
max {p5, p4, p1} = 5
4th → a, 3rd → b, a+b=5
4th|0th → 3
Jump(2,4) ≤ 1

⛔Avoid
⟨⋯ ᵃb ⋯⟩, |a-b|=2

#125034_v2.11


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 4 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 4 │   │   │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 4 │ 3 │   │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 4 │ 3 │ 2 │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 3 │ 2 │ 1 │ 5 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 3 │ 2 │ 1 │ 5 │ 0 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-11-18 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

Combining ✅「4th → a, 3rd → b, a+b=5」 with ✅「⟨ − ▧ ▧ − ▢ ▢ ⟩, Σ▧ = Σ▢」, we have

(1) [4th] + [3rd] = 5 = [1st] + [0th].

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ● │ ● │   │ ▬ │ ▬ │
└───┴───┴───┴───┴───┴───┘

Observe that this implies [5th] + [2nd] = 5 as well.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ # │ ● │ ● │ # │ ▬ │ ▬ │
└───┴───┴───┴───┴───┴───┘

Therefore,

(2) 

Each of the following sets:
• {[5th], [2nd]}
• {[4th], [3rd]}
• {[1st], [0th]}

is equal to one of the following:
{0,5}, {1,4}, {2,3}.

We consider what {[5th], [2nd]} is. If it is {0,5}, then in view of ✅「max {p5, p4, p1} = 5」, we have

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

This matches ⛔「⟨⋯ ᵃb ⋯⟩, |a-b|=2」, which is a contradiction. Else if it is {2,3}, then we cannot match ✅「4th|0th → 3」. Consequently, it is {1,4}. To avoid ⛔「⟨⋯ ᵃb ⋯⟩, |a-b|=2」, we need 4 != [2nd]. So we have

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 4 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 4 │   │   │ 1 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Next, by (2), we have {[4th], [3rd]} = {0,5} or {2,3}. If it is {0,5} then we cannot match ✅「Jump(2,4) ≤ 1」. Therefore, it is {2,3}. Combining this with ✅「4th|0th → 3」, we get 

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 4 │   │   │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 4 │ 3 │   │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 4 │ 3 │ 2 │ 1 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

Finally, to match ✅「max {p5, p4, p1} = 5」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│ 1■│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 4 │ 3 │ 2 │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 3 │ 2 │ 1 │ 5 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 3 │ 2 │ 1 │ 5 │ 0 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.11