Web link

2025-11-11 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
min {p4, p1, p0} = 2
5th → a, 1st → b, ab=0
⟨⋯ ? ⋯ 4 ⋯ (?−3)⟩ (?≠4)
3rd → a, 1st → b, a+b=2+5n

⛔Avoid
⟨   ⁴ᵗʰa ³ʳᵈc   ¹ˢᵗb   ⟩, a > b > c

#125034_v2.10


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 0 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 0 │   │   │   │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 0 │   │   │ 1 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 0 │ 5 │   │ 1 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 0 │ 5 │ 4 │ 1 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 0 │ 5 │ 4 │ 1 │ 3 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-11-11 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

By ✅「5th → a, 1st → b, ab=0」, we have

(1) 0 = [5th] or [1st].

If 0 = [1st] then we cannot match ✅「min {p4, p1, p0} = 2」. Therefore, 0 = [5th]:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 0 │   │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Given that 0 has been used, ✅「⟨⋯ ? ⋯ 4 ⋯ (?−3)⟩ (?≠4)」 implies that [0th] = 2:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 0 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 0 │   │   │   │   │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「3rd → a, 1st → b, a+b=2+5n」, we need

(2) { [3rd] , [1st] } = {3,4}.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │   │3 4│   │3 4│ 2 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │   │   │   │
└───┴───┴───┴───┴───┴───┘

A fortiori, 1 = [4th] or [2nd]. If it is [4th], then we cannot match ✅「min {p4, p1, p0} = 2」. Therefore, 1 = [2nd], and 5 = [4th] follows:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 0 │   │   │   │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 0 │   │   │ 1 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 0 │ 5 │   │ 1 │   │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨   ⁴ᵗʰa ³ʳᵈc   ¹ˢᵗb   ⟩, a > b > c」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 0 │ 5 │   │ 1 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 0 │ 5 │ 4 │ 1 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 0 │ 5 │ 4 │ 1 │ 3 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.10