Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ ? ⋯ 1 ⋯ (?+1)⟩ (?≠1,0)
3rd → a, 1st → b, ab=2+5n
⟨⋯ Perm(0,2,3) ⋯⟩
⛔Avoid
max ⊢0⊣ ≤ 4
#125034_v2.10
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ 0 │ │ │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │ 0 │ │ │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │ 0 │ │ │ 1 │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 0 │ │ │ 1 │ 4 │▒
├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 0 │ 2 │ │ 1 │ 4 │▒
├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 0 │ 2 │ 3 │ 1 │ 4 │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
Proof of 2025-10-28 WR
══════════════════════
Notation: if nth -> a, then we write [nth] = a.
By combining ✅「⟨⋯ Perm(0,2,3) ⋯⟩」 with ⛔「max ⊢0⊣ ≤ 4」, we see that one of the following holds:
(1) ⟨⋯ 5 0 Perm(2,3) ⋯⟩ or ⟨⋯ Perm(2,3) 0 5 ⋯⟩.
There are six possible ways to do so:
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
(2.1) │ │ │ ▬ │ ▬ │ 0 │ 5 │
├───┼───┼───┼───┼───┼───┤
(2.2) │ │ │ 5 │ 0 │ ▬ │ ▬ │
├───┼───┼───┼───┼───┼───┤
(2.3) │ │ ▬ │ ▬ │ 0 │ 5 │ │
├───┼───┼───┼───┼───┼───┤
(2.4) │ │ 5 │ 0 │ ▬ │ ▬ │ │
├───┼───┼───┼───┼───┼───┤
(2.5) │ ▬ │ ▬ │ 0 │ 5 │ │ │
├───┼───┼───┼───┼───┼───┤
(2.6) │ 5 │ 0 │ ▬ │ ▬ │ │ │
└───┴───┴───┴───┴───┴───┘
Note that to match ✅「3rd → a, 1st → b, ab=2+5n」, [3rd] cannot be 0 or 5, and the same is true for [1st]. Accordingly, only (2.6) is possible. We get
┌───┬───┬───┬───┬───┬───┐
│ 5■│ 4■│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ 0 │ │ │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │ 0 │ │ │ │ │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ │ │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘
We also have {[3rd], [2nd]} = {2,3}, and {[1st], [0th]} = {1,4} follows:
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 0 │2 3│2 3│1 4│1 4│
└───┴───┴───┴───┴───┴───┘
By ✅「⟨⋯ ? ⋯ 1 ⋯ (?+1)⟩ (?≠1,0)」, 1 is not in the right corner (0th). Therefore, [1st] = 1 and [0th] = 4.
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│ 1■│ 0■│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
│ 5 │ 0 │ │ │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │ 0 │ │ │ 1 │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 0 │ │ │ 1 │ 4 │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ │ 2 │ │ │ 3 │ │
└───┴───┴───┴───┴───┴───┘
Finally, using ✅「3rd → a, 1st → b, ab=2+5n」, we finish by
┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3■│ 2■│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
│ 5 │ 0 │ │ │ 1 │ 4 │▒
├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 0 │ 2 │ │ 1 │ 4 │▒
├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 0 │ 2 │ 3 │ 1 │ 4 │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ │ │ │ │ │ │
└───┴───┴───┴───┴───┴───┘
Q.E.D.
#125034_v2.10