Web link

2025-10-14 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨? 1 ⋯ (?−2) ⋯ 3 ⋯⟩ (?≠3)
{p5, p1, p0} = ? + {0,1,2}
4th → a, 3rd → b, a+b=1
1st → a, 0th → b, a+b=1+4n

#125034_v2.10


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 1 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 1 │ 0 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 4 │ 1 │ 0 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 4 │ 1 │ 0 │ 5 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 1 │ 0 │ 5 │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 0 │ 5 │ 2 │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-10-14 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

Plainly, by ✅「⟨? 1 ⋯ (?−2) ⋯ 3 ⋯⟩ (?≠3)」, we have [4th] = 1:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 1 │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, it follows from ✅「4th → a, 3rd → b, a+b=1」 that [3rd] = 0:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 1 │ 0 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Next, we consider ✅「{p5, p1, p0} = ? + {0,1,2}」. It requires that [5th], [1st], [0th] are consecutive digits. Therefore,

(1) {[5th], [1st], [0th]} = {2,3,4} or {3,4,5}.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ ▬ │ 1 │ 0 │   │ ▬ │ ▬ │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

On the other hand, to match ✅「1st → a, 0th → b, a+b=1+4n」, we need

(2) {[1st], [0th]} = {2,3} or {4,5}.

Combining (2) with (1), we see that one of the following holds:

(3.1)  {[1st], [0th]} = {2,3}, and [5th] = 4;

(3.2)  {[1st], [0th]} = {4,5}, and [5th] = 3.

If [5th] = 3, then we cannot match ✅「⟨? 1 ⋯ (?−2) ⋯ 3 ⋯⟩ (?≠3)」. Therefore, (3.1) holds and we get [5th] = 4:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │ 0 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 4 │ 1 │ 0 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Furthermore, as {[1st], [0th]} = {2,3}, it follows that [2nd] = 5:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 4 │ 1 │ 0 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 4 │ 1 │ 0 │ 5 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Finally, in view of ✅「⟨? 1 ⋯ (?−2) ⋯ 3 ⋯⟩ (?≠3)」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│ 1■│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 4 │ 1 │ 0 │ 5 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 1 │ 0 │ 5 │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 0 │ 5 │ 2 │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.10