Web link

2025-09-30 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨   ⁴ᵗʰb   ²ⁿᵈc   ⁰ᵗʰa ⟩, a > b > c
⟨⋯ 5 ⋯ 2 ⋯⟩
3rd → a, 0th → b, |a-b|=2

⛔Avoid
min {p5, p3, p0} = 2
⟦4,5⟧ ∋ 0,2

#125034_v2.10


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 1 │   │   │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 1 │   │ 0 │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 1 │ 5 │ 0 │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │   │ 1 │ 5 │ 0 │ 2 │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 5 │ 0 │ 2 │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-09-30 WR
══════════════════════

We consider what [0th] is. By ✅「⟨   ⁴ᵗʰb   ²ⁿᵈc   ⁰ᵗʰa ⟩, a > b > c」, we have

(1) [0th] = 5|4|3|2.

(1.1) We show that [0th] = 3 actually.

------------------------------

(2.1) If [0th] = 5:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │   │   │ 5 │
└───┴───┴───┴───┴───┴───┘

then we would fail to match ✅「⟨⋯ 5 ⋯ 2 ⋯⟩」, which is a contradiction.

(2.2) Else if [0th] = 4, then it follows from ✅「3rd → a, 0th → b, |a-b|=2」 that [3rd] = 2:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 2 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「⟨⋯ 5 ⋯ 2 ⋯⟩」, we have to place 5 at 5th or 4th. But both give contradictions: if 5 = [5th], then we fail to avoid ⛔「min {p5, p3, p0} = 2」; else if 5 = [4th], then we fail to match ✅「⟨   ⁴ᵗʰb   ²ⁿᵈc   ⁰ᵗʰa ⟩, a > b > c」.

(2.3) Lastly, if [0th] = 2, then in view of ✅「⟨   ⁴ᵗʰb   ²ⁿᵈc   ⁰ᵗʰa ⟩, a > b > c」, we have

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│ 2▲│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │   │ 0 │   │ 2 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「3rd → a, 0th → b, |a-b|=2」, we need [3rd] = 4:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │ 4 │ 0 │   │ 2 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Observe that we would fail to avoid ⛔「min {p5, p3, p0} = 2」, which is a contradiction.

------------------------------

We have verified (1.1). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │ 0 │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Next, we consider what [4th] is. By ✅「⟨   ⁴ᵗʰb   ²ⁿᵈc   ⁰ᵗʰa ⟩, a > b > c」, we have

(3) [4th] = 2|1.

(3.1) We claim that [4th] = 1.

------------------------------

For, suppose on the contrary [4th] = 2, then by ✅「⟨⋯ 5 ⋯ 2 ⋯⟩」 we have [5th] = 5 as well:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 2 │   │   │   │ 3 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「3rd → a, 0th → b, |a-b|=2」, we need [3rd] = 1:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 2 │ 1 │   │   │ 3 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │ 0 │   │ 4 │
└───┴───┴───┴───┴───┴───┘

So, using ✅「⟨   ⁴ᵗʰb   ²ⁿᵈc   ⁰ᵗʰa ⟩, a > b > c」, we reach

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 2 │ 1 │ 0 │ 4 │ 3 │
└───┴───┴───┴───┴───┴───┘

It however matches ⛔「⟦4,5⟧ ∋ 0,2」.

------------------------------

We have verified (3.1). As a result, we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │   │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 1 │   │   │   │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │ 0 │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, it follows from ✅「⟨   ⁴ᵗʰb   ²ⁿᵈc   ⁰ᵗʰa ⟩, a > b > c」 that [2nd] = 0:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │   │   │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 1 │   │ 0 │   │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

On the other hand, using ✅「3rd → a, 0th → b, |a-b|=2」, we get [3rd] = 5 :

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │   │ 0 │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 1 │ 5 │ 0 │   │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, using ✅「⟨⋯ 5 ⋯ 2 ⋯⟩」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │ 5 │ 0 │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │   │ 1 │ 5 │ 0 │ 2 │ 3 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 5 │ 0 │ 2 │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.10