Web link

2025-09-23 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟦1,5⟧ ∋ 2,3
⟨⋯ Perm(3,4) ⋯⟩
{p4, p2, p0} = ? + {0,1,2}

⛔Avoid
⟨   ⁴ᵗʰa   ²ⁿᵈb     ⟩, min⟦a,b⟧ = 2

#125034_v2.10


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │   │   │   │   │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │   │ 0 │   │   │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │   │ 0 │   │ 4 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │   │ 0 │ 3 │ 4 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 2 │ 0 │ 3 │ 4 │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-09-23 WR
══════════════════════

Notation: if Nth -> a, then we write pN = a.

Combining ✅「⟦1,5⟧ ∋ 2,3」 with ✅「⟨⋯ Perm(3,4) ⋯⟩」, we see that

(1) digits 2,3,4 are positioned between digits 1 and 5.

It implies three possibliities:

    ┌───┬───┬───┬───┬───┬───┐
    │5th│4th│3rd│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╡
(2) │1/5│   │   │   │1/5│ 0 │
    ├───┼───┼───┼───┼───┼───┤
(3) │ 0 │1/5│   │   │   │1/5│
    ├───┼───┼───┼───┼───┼───┤
(4) │1/5│   │   │   │   │1/5│
    └───┴───┴───┴───┴───┴───┘

(4.1) We show that case (4) holds actually.

------------------------------

(5.1) Suppose case (2) holds:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│1/5│   │   │   │1/5│ 0 │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「{p4, p2, p0} = ? + {0,1,2}」, we need {p4, p2, p0} = {0,1,2}:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│ 2▲│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│1/5│ ▬ │   │ ▬ │1/5│ 0 │
└───┴───┴───┴───┴───┴───┘

As 1 ∈ {p5, p1}, this shows a contradiction.

(5.2) Else, suppose case (3) holds:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │1/5│   │   │   │1/5│
└───┴───┴───┴───┴───┴───┘

Note that there is no way to make {p4, p2, p0} consist of consecutive integer. Therefore, we would fail to match ✅「{p4, p2, p0} = ? + {0,1,2}」 again.

------------------------------

We have verify (4.1). Accordingly, (4) holds and we have:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│1/5│   │   │   │   │1/5│
└───┴───┴───┴───┴───┴───┘

Next, we claim that (p5, p0) = (5, 1). For, if on the contrary (p5, p0) = (1, 5):

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 1 │   │   │   │   │ 5 │
└───┴───┴───┴───┴───┴───┘

then to match ✅「{p4, p2, p0} = ? + {0,1,2}」, we need {p4, p2} = {3,4}. It follows that 3,4 are not adjacent and we would fail to match ✅「⟨⋯ Perm(3,4) ⋯⟩」.

We have thus shown that (p5, p0) = (5, 1):

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │   │   │   │   │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Next, we consider ✅「{p4, p2, p0} = ? + {0,1,2}」 again. To match it, we need:

(6) {p4, p2, p0} = {0,1,2} or {1,2,3}.

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│ 2▲│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ ▬ │   │ ▬ │   │ 1 │
└───┴───┴───┴───┴───┴───┘

Note that 3,4 will not be adjacent if {p4, p2, p0} = {0,1,2}:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│ 1▲│ 0 │
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │0/2│3/4│0/2│3/4│ 1 │
└───┴───┴───┴───┴───┴───┘

So, to match ✅「⟨⋯ Perm(3,4) ⋯⟩」, we need {p4, p2, p0} = {1,2,3} instead, and {p3, p1} = {0,4} follows:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │2/3│0/4│2/3│0/4│ 1 │
└───┴───┴───┴───┴───┴───┘

If 0 = p1, then we would match ⛔「⟨   ⁴ᵗʰa   ²ⁿᵈb     ⟩, min⟦a,b⟧ = 2」. Hence, we get 0 = p3, and 4 = p1:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │   │   │   │   │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │   │ 0 │   │   │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │   │ 0 │   │ 4 │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Finally, to match ✅「⟨⋯ Perm(3,4) ⋯⟩」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │   │ 0 │   │ 4 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │   │ 0 │ 3 │ 4 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 2 │ 0 │ 3 │ 4 │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.10