Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨? 2 ⋯ (?−3) ⋯ 4 ⋯⟩ (?≠5)
2nd → a, 1st → b, ab=20
⛔Avoid
⟨⋯ Perm(1,5) ⋯⟩
#125034_v2.10
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ 2 │ │ │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 3 │ 2 │ │ │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 3 │ 2 │ 0 │ │ │ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 3 │ 2 │ 0 │ │ │ 1 │▒
├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 3 │ 2 │ 0 │ 5 │ │ 1 │▒
├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 3 │ 2 │ 0 │ 5 │ 4 │ 1 │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
Proof of 2025-09-16 WR
══════════════════════
Plainly, ✅「⟨? 2 ⋯ (?−3) ⋯ 4 ⋯⟩ (?≠5)」 gives [4th] = 2:
┌───┬───┬───┬───┬───┬───┐
│5th│ 4■│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ 2 │ │ │ │ │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘
On the other hand, by ✅「2nd → a, 1st → b, ab=20」, we have {[2nd], [1st]} = {4,5}:
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ │ 2 │ │4/5│4/5│ │
└───┴───┴───┴───┴───┴───┘
--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ │ │ 0 │ 3 │ │
└───┴───┴───┴───┴───┴───┘
Since ✅「⟨? 2 ⋯ (?−3) ⋯ 4 ⋯⟩ (?≠5)」 implies [5th] >= 3, it follows that [5th] = 3:
┌───┬───┬───┬───┬───┬───┐
│ 5■│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
│ │ 2 │ │4/5│4/5│ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 3 │ 2 │ │4/5│4/5│ │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ │ │ 0 │ │ │
└───┴───┴───┴───┴───┴───┘
Then, to match ✅「⟨? 2 ⋯ (?−3) ⋯ 4 ⋯⟩ (?≠5)」 we need 0 is to the left of 4. So 0 = [3rd], and 1 = [0th] follows:
┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3■│2nd│1st│ 0■│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
│ 3 │ 2 │ │4/5│4/5│ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 3 │ 2 │ 0 │4/5│4/5│ │▒
├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 3 │ 2 │ 0 │4/5│4/5│ 1 │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
Finally, to avoid ⛔「⟨⋯ Perm(1,5) ⋯⟩」, we finish by
┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2■│ 1■│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╡▒
│ 3 │ 2 │ 0 │ │ │ 1 │▒
├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 3 │ 2 │ 0 │ 5 │ │ 1 │▒
├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 3 │ 2 │ 0 │ 5 │ 4 │ 1 │▒
└───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
Q.E.D.
#125034_v2.10