Web link

2025-09-09 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
2nd → a, 0th → b, a+b=2+5n
4th → a, 2nd → b, |a-b|=4
4th → a, 3rd → b, a+b=4+5n

⛔Avoid
5th → a, 4th → b, ab=0+5n
⟨⋯ Perm(0,4,5) ⋯⟩

#125034_v2.10


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 1 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 1 │   │ 5 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 1 │   │ 5 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 1 │ 3 │ 5 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │   │ 1 │ 3 │ 5 │ 0 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 3 │ 5 │ 0 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-09-09 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

By ✅「4th → a, 2nd → b, |a-b|=4」, we have

(1) {[4th], [2nd]} = {0,4} or {1,5}.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │ ▬ │   │   │
└───┴───┴───┴───┴───┴───┘

On the other hand, to avoid ⛔「5th → a, 4th → b, ab=0+5n」, neither 0 nor 5 is in {[5th], [4th]}. Combining this with (1), we get

(2) ([4th], [2nd]) = (4,0) or (1,5).

(2.1) We show that ([4th], [2nd]) = (1,5) actually .

------------------------------

Suppose on the contrary ([4th], [2nd]) = (4,0):

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 4 │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「4th → a, 3rd → b, a+b=4+5n」, we need [3rd] = 5:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 4 │ 5 │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

We have matched ⛔「⟨⋯ Perm(0,4,5) ⋯⟩」, which is a contradiction.

------------------------------

We have verified (2.1). Accordingly we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 1 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 1 │   │ 5 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Next, note that there is only one way to match ✅「2nd → a, 0th → b, a+b=2+5n」:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │   │ 5 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 1 │   │ 5 │   │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

and only one way to match ✅「4th → a, 3rd → b, a+b=4+5n」:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │   │ 5 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 1 │ 3 │ 5 │   │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │ 0 │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「5th → a, 4th → b, ab=0+5n」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │ 3 │ 5 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │   │ 1 │ 3 │ 5 │ 0 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 3 │ 5 │ 0 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.10