Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
2nd → a, 0th → b, a+b=2+5n
4th → a, 2nd → b, |a-b|=4
4th → a, 3rd → b, a+b=4+5n
⛔Avoid
5th → a, 4th → b, ab=0+5n
⟨⋯ Perm(0,4,5) ⋯⟩
#125034_v2.10
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 1 │ │ 5 │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 1 │ │ 5 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 1 │ 3 │ 5 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 1 │ 3 │ 5 │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 1 │ 3 │ 5 │ 0 │ 2 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2025-09-09 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「4th → a, 2nd → b, |a-b|=4」, we have (1) {[4th], [2nd]} = {0,4} or {1,5}. ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ ▬ │ │ ▬ │ │ │ └───┴───┴───┴───┴───┴───┘ On the other hand, to avoid ⛔「5th → a, 4th → b, ab=0+5n」, neither 0 nor 5 is in {[5th], [4th]}. Combining this with (1), we get (2) ([4th], [2nd]) = (4,0) or (1,5). (2.1) We show that ([4th], [2nd]) = (1,5) actually . ------------------------------ Suppose on the contrary ([4th], [2nd]) = (4,0): ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 4 │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 5 │ │ 3 │ │ └───┴───┴───┴───┴───┴───┘ Then, to match ✅「4th → a, 3rd → b, a+b=4+5n」, we need [3rd] = 5: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 4 │ 5 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┘ We have matched ⛔「⟨⋯ Perm(0,4,5) ⋯⟩」, which is a contradiction. ------------------------------ We have verified (2.1). Accordingly we get ┌───┬───┬───┬───┬───┬───┐ │5th│ 4■│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 1 │ │ 5 │ │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 0 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ Next, note that there is only one way to match ✅「2nd → a, 0th → b, a+b=2+5n」: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ │ 5 │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 1 │ │ 5 │ │ 2 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ 0 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ and only one way to match ✅「4th → a, 3rd → b, a+b=4+5n」: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ │ 5 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 1 │ 3 │ 5 │ │ 2 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ 0 │ │ 4 │ └───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「5th → a, 4th → b, ab=0+5n」, we finish by ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ 3 │ 5 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 1 │ 3 │ 5 │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 1 │ 3 │ 5 │ 0 │ 2 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.10