Web link

2025-09-02 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
4th → a, 1st → b, |a-b|=1
4th|1st → 0
⟨     ³ʳᵈa ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 43

⛔Avoid
2nd → a, 1st → b, ab=0
5th → a, 0th → b, |a-b|=1
⟨⋯ 4 ⋯ ? 1 ⋯ (?+2)⟩ (?≠1)
⟨⋯ ? ⋯ 5 ⋯ (?+2)⟩ (?≠3)

#125034_v2.10


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 0 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 0 │   │   │ 1 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 0 │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 0 │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 0 │ 4 │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 0 │ 4 │ 3 │ 1 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-09-02 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

Combining ✅「4th|1st → 0」 with ✅「4th → a, 1st → b, |a-b|=1」, we have:

(1) ([4th], [1st]) = (1,0) | (0,1).

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │   │ ▬ │   │
└───┴───┴───┴───┴───┴───┘

If it is (1,0), then we would match ⛔「2nd → a, 1st → b, ab=0」. Therefore, it has to be (0,1).

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 0 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 0 │   │   │ 1 │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

It follows that [0th] = 5|4|3|2. 

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │   │ 1 │ ▬ │
└───┴───┴───┴───┴───┴───┘

(2) We show that [0th] = 2 actually.

------------------------------

(2.1) If [0th] = 5:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │   │ 1 │ 5 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

then to match ✅「⟨     ³ʳᵈa ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 43」, we need ([3rd], [2nd]) = (4,3):

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │ 4 │ 3 │ 1 │ 5 │
└───┴───┴───┴───┴───┴───┘

We have matched ⛔「⟨⋯ 4 ⋯ ? 1 ⋯ (?+2)⟩ (?≠1)」, which is a contradiction.

(2.2) Else if [0th] = 4:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │   │ 1 │ 4 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

then to match ✅「⟨     ³ʳᵈa ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 43」, we need [3rd] = 5:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │ 5 │   │ 1 │ 4 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

To avoid ⛔「⟨⋯ ? ⋯ 5 ⋯ (?+2)⟩ (?≠3)」, we reach

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 3 │ 0 │ 5 │ 2 │ 1 │ 4 │
└───┴───┴───┴───┴───┴───┘

However, we have matched ⛔「5th → a, 0th → b, |a-b|=1」. This shows a contradiction.

(2.3) Else if [0th] = 3:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │   │ 1 │ 3 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

then to avoid ⛔「5th → a, 0th → b, |a-b|=1」, we need [5th] = 5:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 0 │   │   │ 1 │ 3 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

We cannot match ✅「⟨     ³ʳᵈa ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 43」 now, which is a contradiction.

------------------------------

We have verified (2). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 0 │   │   │ 1 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 0 │   │   │ 1 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, note that there is only one way to avoid ⛔「⟨⋯ ? ⋯ 5 ⋯ (?+2)⟩ (?≠3)」:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 0 │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 0 │   │   │ 1 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, to match ✅「⟨     ³ʳᵈa ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 43」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │ 0 │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 0 │ 4 │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 0 │ 4 │ 3 │ 1 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.10