Web link

2025-08-05 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
1st → a, 0th → b, |a-b|=1
⟨   ⁴ᵗʰa ³ʳᵈb     ⁰ᵗʰc ⟩, (abc)₁₀ ≥ 153
⟦0,2⟧ ∋ 3,4

⛔Avoid
⟨ ⁵ᵗʰ↑ ⁴ᵗʰ↓         ⟩ after 3×⟨→⟩
{p4, p2, p0} = ? + {0,1,2}
2nd → 0|4

#125034_v2.9


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │ 4 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │   │ 4 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │ 2 │ 4 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 2 │ 4 │ 3 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 2 │ 4 │ 3 │ 1 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 2 │ 4 │ 3 │ 1 │ 0 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-08-05 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

Firstly, we consider where to place 4. By ✅「⟦0,2⟧ ∋ 3,4」, it is not in corners (5th or 0th). By ⛔「2nd → 0|4」, it is not at 2nd.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ / │   │   │ / │   │ / │
└───┴───┴───┴───┴───┴───┘

If 4 = [1st]:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ / │   │   │ / │ 4 │ / │
└───┴───┴───┴───┴───┴───┘

then to match ✅「1st → a, 0th → b, |a-b|=1」, we need [0th] = 3|5. However, in both cases, we would fail to match ✅「⟦0,2⟧ ∋ 3,4」. Therefore, 4 != [1st].

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ / │   │   │ / │ / │ / │
└───┴───┴───┴───┴───┴───┘

(1) It follows that 4 = [4th] | [3rd], and we claim that indeed 4 = [3rd].

For, if on the contrary 4 = [4th]:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 4 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

then, to match ✅「⟦0,2⟧ ∋ 3,4」, we need [5th] = 0|2:

      ┌───┬───┬───┬───┬───┬───┐
      │ 5▲│4th│3rd│2nd│1st│0th│
      ╞═══╪═══╪═══╪═══╪═══╪═══╡
(2.1) │ 0 │ 4 │   │   │   │   │
      ├───┼───┼───┼───┼───┼───┤
(2.2) │ 2 │ 4 │   │   │   │   │
      └───┴───┴───┴───┴───┴───┘

(3) We show that both cases lead to contradictions.

------------------------------

(3.1) If case (2.1) holds, then to avoid ⛔「⟨ ⁵ᵗʰ↑ ⁴ᵗʰ↓         ⟩ after 3×⟨→⟩」, we need [1st] = 5:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 4 │   │   │ 5 │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

But then we would fail to match ✅「1st → a, 0th → b, |a-b|=1」.

(3.2) Else if case (2.2) holds:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 4 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

then to match ✅「1st → a, 0th → b, |a-b|=1」, we have {[1st], [0th]} = {0,1}, whence {[3th], [2nd]} = {3,5}:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 4 │3 5│3 5│0 1│0 1│
└───┴───┴───┴───┴───┴───┘

We would match ⛔「⟨ ⁵ᵗʰ↑ ⁴ᵗʰ↓         ⟩ after 3×⟨→⟩」, which is a contradiction.

------------------------------

We have verified (3) and (1). Accordingly, we get 4 = [3rd]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │ 4 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Next, we consider where to place 5. To match ✅「1st → a, 0th → b, |a-b|=1」, it cannot be at 1st or 0th.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 4 │   │ / │ / │
└───┴───┴───┴───┴───┴───┘

(4) So, 5 = [5th] | [4th] | [2nd]. We proceed to show that 5 != [2nd].

------------------------------

Suppose on the contrary 5 = [2nd]:

      ┌───┬───┬───┬───┬───┬───┐
      │5th│4th│3rd│ 2▲│1st│0th│
      ╞═══╪═══╪═══╪═══╪═══╪═══╡
(4.1) │   │   │ 4 │ 5 │   │   │
      └───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Then, let us consider where to place 0:

• If 0 is at 1st or 0th in (4.1), then to match ✅「1st → a, 0th → b, |a-b|=1」, we need {0,1} = {[1st], [0th]}:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 4 │ 5 │0 1│0 1│
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

But then we would match ⛔「⟨ ⁵ᵗʰ↑ ⁴ᵗʰ↓         ⟩ after 3×⟨→⟩」, which is a contradiction.

• Else if 0 = [4th] in (4.1), then we cannot match ✅「⟨   ⁴ᵗʰa ³ʳᵈb     ⁰ᵗʰc ⟩, (abc)₁₀ ≥ 153」.

It follows that 0 = [5th] in (4.1):

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │   │ 4 │ 5 │   │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

We consider what [4th] is. In view of ✅「⟨   ⁴ᵗʰa ³ʳᵈb     ⁰ᵗʰc ⟩, (abc)₁₀ ≥ 153」, it is not 1; and to match ✅「⟦0,2⟧ ∋ 3,4」, it is not 2. Therefore [4th] = 3:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 3 │ 4 │ 5 │   │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Note that we would match ⛔「⟨ ⁵ᵗʰ↑ ⁴ᵗʰ↓         ⟩ after 3×⟨→⟩」, which is a contradiction.

------------------------------

We have verified (4). Accordingly, we have 4 = [5th] | [4th]:

    ┌───┬───┬───┬───┬───┬───┐
    │5th│4th│3rd│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╡
(5) │   │ 5 │ 4 │   │   │   │
    ├───┼───┼───┼───┼───┼───┤
(6) │ 5 │   │ 4 │   │   │   │
    └───┴───┴───┴───┴───┴───┘

Suppose case (5) holds. Then, to match ✅「⟦0,2⟧ ∋ 3,4」 and avoid ⛔「⟨ ⁵ᵗʰ↑ ⁴ᵗʰ↓         ⟩ after 3×⟨→⟩」, we have

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 5 │ 4 │   │   │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

To match ✅「1st → a, 0th → b, |a-b|=1」, we then have

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 5 │ 4 │ 3 │0 1│0 1│
└───┴───┴───┴───┴───┴───┘

However, it would match ⛔「⟨ ⁵ᵗʰ↑ ⁴ᵗʰ↓         ⟩ after 3×⟨→⟩」, which is a contradiction.

It shows that case (5) does not hold, and case (6) holds indeed:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │ 4 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │   │ 4 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Given that, to match ✅「⟦0,2⟧ ∋ 3,4」, we need [4th] = 0|2. In view of ✅「⟨   ⁴ᵗʰa ³ʳᵈb     ⁰ᵗʰc ⟩, (abc)₁₀ ≥ 153」, we get:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │   │ 4 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │ 2 │ 4 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

To match ✅「1st → a, 0th → b, |a-b|=1」, we need to use 0,1. It follows that [3rd] = 3:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │ 2 │ 4 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 2 │ 4 │ 3 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「{p4, p2, p0} = ? + {0,1,2}」, we finish by 

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│ 1■│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │ 2 │ 4 │ 3 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 2 │ 4 │ 3 │ 1 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 2 │ 4 │ 3 │ 1 │ 0 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.9