Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
5th|2nd → 0
Jump(2,4) = 2
⛔Avoid
⟨ ▧ ▧ ▧ ▢ ▢ ▢ ⟩, Σ▧ ≤ Σ▢
⟨⋯ a ⋯ 1 ⋯⟩, a = 2|4|5
⟨ ⁵ᵗʰa ⁰ᵗʰb ⟩, (ab)₁₀ ≤ 30
#125034_v2.9
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 1 │ │ 0 │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ 1 │ │ 0 │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 1 │ │ 0 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 1 │ 4 │ 0 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 1 │ 4 │ 0 │ 5 │ 2 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2025-07-29 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. To avoid ⛔「⟨⋯ a ⋯ 1 ⋯⟩, a = 2|4|5」, we need (1) 1 is to the left of 2,4,5. This implies (2) 1 = [5th] | [4th] | [3rd]. If 1 = [5th], then we cannot avoid ⛔「⟨ ⁵ᵗʰa ⁰ᵗʰb ⟩, (ab)₁₀ ≤ 30」. Else if 1 = [3rd]: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 1 │ │ │ │ └───┴───┴───┴───┴───┴───┘ then we cannot match (1) and ✅「Jump(2,4) = 2」 at the same time. Therefore, 1 = [4th]: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 1 │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ 0 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ Then we consider how to match ✅「5th|2nd → 0」. If [5th] = 0: ┌───┬───┬───┬───┬───┬───┐ │ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 1 │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ then we would fail to avoid ⛔「⟨ ▧ ▧ ▧ ▢ ▢ ▢ ⟩, Σ▧ ≤ Σ▢」. So, we have 0 = [2nd] instead: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 1 │ │ 0 │ │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ By (1), the boxes to the right of 1 are occupied by 2,4,5. It follows that 3 = [5th]: ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ │ 0 │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ 1 │ │ 0 │ │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ By ✅「Jump(2,4) = 2」, 2 and 4 are separated by 2 boxes. There is only one way to do so: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 1 │ ▬ │ 0 │ │ ▬ │ └───┴───┴───┴───┴───┴───┘ whence 5 = [1st]: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 1 │ │ 0 │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 1 │ │ 0 │ 5 │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨ ▧ ▧ ▧ ▢ ▢ ▢ ⟩, Σ▧ ≤ Σ▢」, we finish by ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3■│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 1 │ │ 0 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 1 │ 4 │ 0 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 1 │ 4 │ 0 │ 5 │ 2 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.9