Web link

2025-07-22 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨   ⁴ᵗʰa ³ʳᵈb   ¹ˢᵗc   ⟩, a > b > c
5th → a, 2nd → b, ab=2+4n
⟨ ▧ ▧ ▧ ▢ ▢ ▢ ⟩, Σ▧ ≤ Σ▢

⛔Avoid
⟨ ▧ ▧ − ▢ − − ⟩, Σ▧ ≤ ▢
⟨⋯ Perm(1,3,4) ⋯⟩

#125034_v2.9


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 2 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 2 │   │ 1 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 2 │   │ 1 │   │ 0 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 2 │   │ 1 │ 5 │ 0 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 2 │ 4 │ 1 │ 5 │ 0 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 2 │ 4 │ 1 │ 5 │ 0 │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-07-22 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

We consider where 0 is placed. To match ✅「⟨   ⁴ᵗʰa ³ʳᵈb   ¹ˢᵗc   ⟩, a > b > c」, it cannot be at 4th or 3rd; and to match ✅「5th → a, 2nd → b, ab=2+4n」, it cannot be at 5th or 2nd. Therefore,

(1) 0 = [1st] or [0th].

From this, we consider which two nonzero digits the set {[2nd], [1st], [0th]} should have in order to match ✅「⟨ ▧ ▧ ▧ ▢ ▢ ▢ ⟩, Σ▧ ≤ Σ▢」. 

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │ ▬ │ ▬ │ ▬ │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

After trying the possible combinations like {5,4}, {5,3}, etc., we find that only two combinations work:

(2) {[2nd], [1st], [0th]} = {5,4,0} or {5,3,0}.

A fortiori,

(3) 2 ∉ {[2nd], [1st], [0th]}.

Having this, we consider how to match the pattern ✅「5th → a, 2nd → b, ab=2+4n」:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ ? │   │   │ ? │   │   │
└───┴───┴───┴───┴───┴───┘

To match it, we need

(4) {[5th], [2nd]} = {2,1} or {2,3} or {2,5}.

Accordingly, we need 2 ∈ {[5th], [2nd]}. Combining this with (3), we get 2 = [5th]:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 2 │   │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, we consider where 1 is placed. By (2), it is at 4th or 3rd. But if 1 = [4th] then we cannot match ✅「⟨   ⁴ᵗʰa ³ʳᵈb   ¹ˢᵗc   ⟩, a > b > c」. Therefore, 1 = [3rd]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 2 │   │ 1 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Plainly, ✅「⟨   ⁴ᵗʰa ³ʳᵈb   ¹ˢᵗc   ⟩, a > b > c」 then gives 0 = [1st]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │   │ 1 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 2 │   │ 1 │   │ 0 │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Now we consider where to place 5. By (2), it is at 2nd or 0th. If it is at 0th, then we would fail to avoid ⛔「⟨⋯ Perm(1,3,4) ⋯⟩」. Therefore, 5 = [2nd]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │   │ 1 │   │ 0 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 2 │   │ 1 │ 5 │ 0 │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨ ▧ ▧ − ▢ − − ⟩, Σ▧ ≤ ▢」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │   │ 1 │ 5 │ 0 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 2 │ 4 │ 1 │ 5 │ 0 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 2 │ 4 │ 1 │ 5 │ 0 │ 3 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.9