Web link

2025-07-15 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
2nd → 0|1|4|5
⟨ ⁵ᵗʰ↓ ⁴ᵗʰ↓ ³ʳᵈ↑ ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after 5−⟨⋯⟩
⟨ − ▧ ▧ ▢ ▢ ▢ ⟩, Σ▧ ≥ Σ▢

⛔Avoid
⟨⋯ ? ⋯ 5 ⋯ (?−2)⟩ (?≠5)
⟨ ⁵ᵗʰ= ⁴ᵗʰ↓ ³ʳᵈ↑ ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ= ⟩ after 5−⟨⇌⟩
4th → a, 2nd → b, |a-b|=4

#125034_v2.9


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 5 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │ 3 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │ 3 │   │   │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 3 │ 2 │   │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 3 │ 2 │ 0 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 3 │ 2 │ 0 │ 4 │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-07-15 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

By ✅「⟨ ⁵ᵗʰ↓ ⁴ᵗʰ↓ ³ʳᵈ↑ ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↑ ⟩ after 5−⟨⋯⟩」, we have

(1) 

{[5th], [4th], [1st]} = {3,4,5} and

{[3rd], [2nd], [0th]} = {0,1,2}.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ ▬ │ ▬ │ ? │ ? │ ▬ │ ? │
└───┴───┴───┴───┴───┴───┘

(2) A fortiori, 5 ∈ {[5th], [4th], [1st]}.

(2.1) We show that 5 = [5th] indeed.

------------------------------

(2.2) If 5 is at 1st:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ ▬ │ ▬ │ ? │ ? │ 5 │ ? │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

then the sum [2nd] + [1st] + [0th] is at least 5 + 1 + 0 = 6, while the sum [4th] + [3rd] is at most 4 + 2 = 6.

So, to match ✅「⟨ − ▧ ▧ ▢ ▢ ▢ ⟩, Σ▧ ≥ Σ▢」, we need [4th] = 4, [3rd] = 2, {[2nd], [0th]} = {0,1}, and [5th] = 3:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│ 4▲│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 3 │ 4 │ 2 │   │ 5 │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

But then we would fail to avoid ⛔「⟨⋯ ? ⋯ 5 ⋯ (?−2)⟩ (?≠5)」, which is a contradiction.

------------------------------

(2.3) On the other hand, suppose 5 = [4th]:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ ▬ │ 5 │ ? │ ? │ ▬ │ ? │
└───┴───┴───┴───┴───┴───┘

By ✅「2nd → 0|1|4|5」 and (1), we have [2nd] = 0 or 1, and by ⛔「4th → a, 2nd → b, |a-b|=4」 we have [2nd] != 1. So [2nd] = 0:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ ▬ │ 5 │ ? │ 0 │ ▬ │ ? │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, using (1), we have 2 possibilities:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 3 │ 5 │ ? │ 0 │ 4 │ ? │
├───┼───┼───┼───┼───┼───┤
│ 4 │ 5 │ ? │ 0 │ 3 │ ? │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

To avoid ⛔「⟨⋯ ? ⋯ 5 ⋯ (?−2)⟩ (?≠5)」, we get

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 3 │ 5 │ 1 │ 0 │ 4 │ 2 │
├───┼───┼───┼───┼───┼───┤
│ 4 │ 5 │ 2 │ 0 │ 3 │ 1 │
└───┴───┴───┴───┴───┴───┘

In both cases, we match ⛔「⟨ ⁵ᵗʰ= ⁴ᵗʰ↓ ³ʳᵈ↑ ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ= ⟩ after 5−⟨⇌⟩」, which is a contradiction.

------------------------------

Combining (2), (2.2) and (2.3), we have verified (2.1). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 5 │   │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Next, we consider what [4th] and [1st] are. By (1) we have two possibilities:

([4th], [1st]) = (4,3) or (3,4).

(3) We claim that it is (3,4) actually.

------------------------------

For, if instead it is (4,3):

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 4 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

then, combining ✅「2nd → 0|1|4|5」 with ⛔「4th → a, 2nd → b, |a-b|=4」, we get [2nd] = 1:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 4 │   │ 1 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

To avoid ⛔「⟨ ⁵ᵗʰ= ⁴ᵗʰ↓ ³ʳᵈ↑ ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ= ⟩ after 5−⟨⇌⟩」 we finish by 

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 4 │ 0 │ 1 │ 3 │ 2 │
└───┴───┴───┴───┴───┴───┘

However, note that it fails to match ✅「⟨ − ▧ ▧ ▢ ▢ ▢ ⟩, Σ▧ ≥ Σ▢」.

------------------------------

We have verified (3) and get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │ 3 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │ 3 │   │   │ 4 │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

Then, observe that to match ✅「⟨ − ▧ ▧ ▢ ▢ ▢ ⟩, Σ▧ ≥ Σ▢」, 2 cannot be placed at 2nd or 0th. Consequently, 2 = [3rd]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │ 3 │   │   │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 3 │ 2 │   │ 4 │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨ ⁵ᵗʰ= ⁴ᵗʰ↓ ³ʳᵈ↑ ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ= ⟩ after 5−⟨⇌⟩」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │ 3 │ 2 │   │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 3 │ 2 │ 0 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 3 │ 2 │ 0 │ 4 │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.9