Web link

2025-07-08 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨ ⁵ᵗʰa ⁴ᵗʰb ³ʳᵈc       ⟩, (abc)₁₀ ≤ 201
⟨     ³ʳᵈa   ¹ˢᵗb ⁰ᵗʰc ⟩, (abc)₁₀ ≤ 314
3rd → a, 2nd → b, ab=0+5n
4th → a, 3rd → b, a+b=6

⛔Avoid
⟨ ▧ ▧ − ▢ ▢ − ⟩, Σ▧ = Σ▢
⟨   ⁴ᵗʰa   ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 42

#125034_v2.9


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 4 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 4 │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 4 │ 2 │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │ 4 │ 2 │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │ 4 │ 2 │ 0 │ 3 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 4 │ 2 │ 0 │ 3 │ 5 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-07-08 WR
══════════════════════

By ✅「4th → a, 3rd → b, a+b=6」, we have 

(1) {[4th], [3rd]} = {1,5} or {2,4}.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │ ▬ │   │   │   │
└───┴───┴───┴───┴───┴───┘

We show that the latter holds actually.

------------------------------

If on the contrary {[4th], [3rd]} = {1,5}, then 5 = [4th] or [3rd]. But

(2.1) if 5 = [4th], then we would fail to avoid ⛔「⟨   ⁴ᵗʰa   ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 42」;

(2.2) else if 5 = [3rd], then we would fail to match ✅「⟨     ³ʳᵈa   ¹ˢᵗb ⁰ᵗʰc ⟩, (abc)₁₀ ≤ 314」.

------------------------------

We have verified that {[4th], [3rd]} = {2,4}. Combining this with ✅「⟨     ³ʳᵈa   ¹ˢᵗb ⁰ᵗʰc ⟩, (abc)₁₀ ≤ 314」, we have 4 = [4th] and 2 = [3rd]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 4 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 4 │ 2 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Next, we consider how to match ✅「3rd → a, 2nd → b, ab=0+5n」. Observe that we need [2nd] = 0 or 5:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 4 │ 2 │   │   │   │
└───┴───┴───┴───┴───┴───┘

If it is 5 then we would fail to avoid ⛔「⟨   ⁴ᵗʰa   ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 42」. Therefore, [2nd] = 0:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 4 │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 4 │ 2 │ 0 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Given that 0 and 2 have been used, we need [5th] = 1 in order to match ✅「⟨ ⁵ᵗʰa ⁴ᵗʰb ³ʳᵈc       ⟩, (abc)₁₀ ≤ 201」:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 4 │ 2 │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │ 4 │ 2 │ 0 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨ ▧ ▧ − ▢ ▢ − ⟩, Σ▧ = Σ▢」, we finish by 

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│ 1■│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │ 4 │ 2 │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │ 4 │ 2 │ 0 │ 3 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 4 │ 2 │ 0 │ 3 │ 5 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.9