Web link

2025-06-24 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨⋯ 2 ⋯ 5 ⋯⟩
⟨     ³ʳᵈa ²ⁿᵈb ¹ˢᵗc   ⟩, (abc)₁₀ ≤ 243
4th → a, 0th → b, |a-b|=4
5th → a, 1st → b, |a-b|=2

⛔Avoid
⟨⋯ Perm(0,1,5) ⋯⟩
⟨ ▧ ▧ ▧ − ▢ ▢ ⟩, Σ▧ ≤ Σ▢
3rd|1st|0th → 4

#125034_v2.9


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 4 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 4 │   │   │   │ 0 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 4 │   │   │ 5 │ 0 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 3 │ 4 │   │   │ 5 │ 0 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 3 │ 4 │   │ 2 │ 5 │ 0 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 3 │ 4 │ 1 │ 2 │ 5 │ 0 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-06-24 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

By ✅「4th → a, 0th → b, |a-b|=4」, we have

(1) {[4th], [0th]} = {0,4} or {1,5}.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │   │   │ ▬ │
└───┴───┴───┴───┴───┴───┘

(1.1) We show that indeed {[4th], [0th]} = {0,4}.

------------------------------

Suppose on the contrary {[4th], [0th]} = {1,5}. There are two possibilities:

    ┌───┬───┬───┬───┬───┬───┐
    │5th│ 4▲│3rd│2nd│1st│ 0▲│
    ╞═══╪═══╪═══╪═══╪═══╪═══╡
(2) │   │ 5 │   │   │   │ 1 │
    ├───┼───┼───┼───┼───┼───┤
(3) │   │ 1 │   │   │   │ 5 │
    └───┴───┴───┴───┴───┴───┘

(2.1) If (2) holds, then using ✅「⟨⋯ 2 ⋯ 5 ⋯⟩」, we get

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 5 │   │   │   │ 1 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

To match ✅「⟨     ³ʳᵈa ²ⁿᵈb ¹ˢᵗc   ⟩, (abc)₁₀ ≤ 243」, we need [3rd] = 0:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 5 │ 0 │   │   │ 1 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

It follows that we cannot match ✅「5th → a, 1st → b, |a-b|=2」 and avoid ⛔「3rd|1st|0th → 4」 at the same time. This shows a contradiction.

(3.1) On the other hand, if (3) holds:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │   │   │   │ 5 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「5th → a, 1st → b, |a-b|=2」, we need 

(3.2) {[5th], [1st]} = {0,2} or {2,4}.

A fortiori, 2 ∈ {[5th], [1st]}, whence 2!=[3rd]. Therefore, to match ✅「⟨     ³ʳᵈa ²ⁿᵈb ¹ˢᵗc   ⟩, (abc)₁₀ ≤ 243」, we need [3rd] = 0:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │ 0 │   │   │ 5 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, using (3.2), we have

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ - │ 1 │ 0 │   │ - │ 5 │
└───┴───┴───┴───┴───┴───┘

where "-" are occupied by 2,4. Using ⛔「3rd|1st|0th → 4」, we get 4 = [5th] and 2 = [1st]:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 4 │ 1 │ 0 │   │ 2 │ 5 │
└───┴───┴───┴───┴───┴───┘

Note that we fail to avoid ⛔「⟨ ▧ ▧ ▧ − ▢ ▢ ⟩, Σ▧ ≤ Σ▢」. This shows a contradiction.

------------------------------

We have shown that (2) and (3) give contradictions. Therefore, (1.1) is verified. Combining (1.1) with ⛔「3rd|1st|0th → 4」, we get 4 = [4th] and 0 = [0th]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 4 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 4 │   │   │   │ 0 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Then, we consider where to place 5. By ✅「⟨⋯ 2 ⋯ 5 ⋯⟩」, it is not at 5th. By ✅「⟨     ³ʳᵈa ²ⁿᵈb ¹ˢᵗc   ⟩, (abc)₁₀ ≤ 243」, it is not at 3rd either. Therefore,

(4) 5 = [2nd] or [1st].

(4.1) We show that 5 = [1st].

------------------------------

If on the contrary 5 = [2nd]:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 4 │   │ 5 │   │ 0 │
└───┴───┴───┴───┴───┴───┘

then in view of ✅「⟨⋯ 2 ⋯ 5 ⋯⟩」, we have 2 = [5th] or [3rd]:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ - │ 4 │ - │ 5 │   │ 0 │
└───┴───┴───┴───┴───┴───┘

Noting that if 2 = [3rd] then we cannot match ✅「⟨     ³ʳᵈa ²ⁿᵈb ¹ˢᵗc   ⟩, (abc)₁₀ ≤ 243」, we get 2 = [5th]:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 4 │   │ 5 │   │ 0 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

We are unable to match ✅「5th → a, 1st → b, |a-b|=2」 now. This shows a contradiction.

------------------------------

We have verified (4.1). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 4 │   │   │   │ 0 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 4 │   │   │ 5 │ 0 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Given that 5 = [1st], ✅「5th → a, 1st → b, |a-b|=2」 implies [5th] = 3:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 4 │   │   │ 5 │ 0 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 3 │ 4 │   │   │ 5 │ 0 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨⋯ Perm(0,1,5) ⋯⟩」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 3 │ 4 │   │   │ 5 │ 0 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 3 │ 4 │   │ 2 │ 5 │ 0 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 3 │ 4 │ 1 │ 2 │ 5 │ 0 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.9