Web link

2025-06-16 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨⋯ 2 ⋯ 0 ⋯ 4 ⋯⟩
median {p5, p2, p1} = 1
Jump(1,3) ≤ 3
5th → a, 3rd → b, a+b=6

⛔Avoid
4th → a, 1st → b, ab=0+5n

#125034_v2.9


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 1 │   │   │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 1 │   │ 5 │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │ 2 │ 5 │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │ 2 │ 5 │ 0 │ 3 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 2 │ 5 │ 0 │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-06-16 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

Observe that ✅「median {p5, p2, p1} = 1」 implies 

(1) 0 ∈ {[5th], [2nd], [1st]}.

On the other hand, note that:

(1.1) according to ✅「⟨⋯ 2 ⋯ 0 ⋯ 4 ⋯⟩」, 0 is not in the left corner (5th); 

(1.2) by ⛔「4th → a, 1st → b, ab=0+5n」, it is not at 1st either. 

Therefore, (1) implies 0 = [2nd]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │ 0 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, we consider how to match ✅「5th → a, 3rd → b, a+b=6」. There are two possibilities for S := {[5th], [3rd]}:

(2) S = {2,4} or {1,5}.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ ▬ │   │ ▬ │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

If S = {2,4}, then we would fail to match ✅「⟨⋯ 2 ⋯ 0 ⋯ 4 ⋯⟩」. Therefore,

(3) S = {1,5}.

A fortiori, we have

(4) 1 ∈ S = {[5th], [3rd]}.

By ✅「median {p5, p2, p1} = 1」, 1 is in {[5th], [2nd], [1st]}. Combining this with (4), we get 1 = [5th]:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 1 │   │   │ 0 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

It then follows from (3) that

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │   │   │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 1 │   │ 5 │ 0 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

To match ✅「⟨⋯ 2 ⋯ 0 ⋯ 4 ⋯⟩」, we need to have 2 to the left of 0. There is only one way to do so:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │   │ 5 │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │ 2 │ 5 │ 0 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, to match ✅「Jump(1,3) ≤ 3」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│ 1■│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │ 2 │ 5 │ 0 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │ 2 │ 5 │ 0 │ 3 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 2 │ 5 │ 0 │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.9