Web link

2025-05-27 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
2nd → a, 1st → b, a+b=3+4n
⟨ ⁵ᵗʰa     ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 31
⟨⋯ Perm(3,4) ⋯⟩
min {p5, p4} = 2
⟨⋯ Perm(0,4) ⋯⟩

⛔Avoid
⟨ − − ▧ ▧ ▢ − ⟩, Σ▧ ≤ ▢

#125034_v2.9


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 2 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │ 2 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │ 2 │   │ 4 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 2 │   │ 4 │   │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 2 │   │ 4 │ 3 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 2 │ 0 │ 4 │ 3 │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-05-27 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

By ✅「min {p5, p4} = 2」, we have 2 = [5th] | [4th]. If it is at [5th], then we will fail to match ✅「⟨ ⁵ᵗʰa     ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 31」. Therefore, 2= [4th]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 2 │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Next, by combining ✅「⟨⋯ Perm(3,4) ⋯⟩」 and ✅「⟨⋯ Perm(0,4) ⋯⟩」, we see that one of the following holds:

(1) ⟨⋯ 0 4 3 ⋯⟩ or ⟨⋯ 3 4 0 ⋯⟩.

As a result, [5th] != 0,3,4. So [5th] is 1 or 5. Using ✅「⟨ ⁵ᵗʰa     ²ⁿᵈb     ⟩, (ab)₁₀ ≥ 31」 again, we have [5th] = 5:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 2 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 5 │ 2 │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to match (1), there are two possibilities:

    ┌───┬───┬───┬───┬───┬───┐
    │5th│4th│ 3▲│ 2▲│ 1▲│ 0▲│
    ╞═══╪═══╪═══╪═══╪═══╪═══╡
(2) │ 5 │ 2 │ 1 │ ▬ │ 4 │ ▬ │
    ├───┼───┼───┼───┼───┼───┤
(3) │ 5 │ 2 │ ▬ │ 4 │ ▬ │ 1 │
    └───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

where "▬" are occupied by 0,3. Observe that we cannot avoid ⛔「⟨ − − ▧ ▧ ▢ − ⟩, Σ▧ ≤ ▢」 if (2) holds. Therefore (3) holds and we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │ 2 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 5 │ 2 │   │ 4 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 2 │   │ 4 │   │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Finally, to match ✅「2nd → a, 1st → b, a+b=3+4n」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 5 │ 2 │   │ 4 │   │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 2 │   │ 4 │ 3 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 2 │ 0 │ 4 │ 3 │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.9