Web link

2025-05-20 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨   ⁴ᵗʰc ³ʳᵈb   ¹ˢᵗa   ⟩, a > b > c
⟨ ⁵ᵗʰa     ²ⁿᵈb     ⟩, max⟦a,b⟧ = 4
⟦0,4⟧ ∋ 1
Jump(2,3) = 3

⛔Avoid
max ⊢2⊣ = 2

#125034_v2.9


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 0 │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 0 │ 1 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 0 │ 1 │   │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 3 │ 0 │ 1 │   │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 3 │ 0 │ 1 │ 4 │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 3 │ 0 │ 1 │ 4 │ 2 │ 5 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-05-20 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

To match ✅「Jump(2,3) = 3」, there are two possibilities:

    ┌───┬───┬───┬───┬───┬───┐
    │5th│4th│3rd│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╡
(1) │   │ ▬ │   │   │   │ ▬ │
    ├───┼───┼───┼───┼───┼───┤
(2) │ ▬ │   │   │   │ ▬ │   │
    └───┴───┴───┴───┴───┴───┘

where "▬" are occupied by 2,3.

We show that (2) holds actually.

------------------------------

Suppose on the contrary (1) holds:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │   │   │ ▬ │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │ 0 │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「⟨   ⁴ᵗʰc ³ʳᵈb   ¹ˢᵗa   ⟩, a > b > c」, the "b" and "a" have to be 4 and 5:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │ 4 │   │ 5 │ ▬ │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

Note that we cannot match ✅「⟦0,4⟧ ∋ 1」 now. This shows that if (2) does not hold, then there is a contradiction.

------------------------------

We have verified that (2) holds. Accordingly, we get

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ ▬ │   │   │   │ ▬ │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │ 0 │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, in view of ✅「⟨   ⁴ᵗʰc ³ʳᵈb   ¹ˢᵗa   ⟩, a > b > c」, we get:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ ▬ │ 0 │   │   │ ▬ │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ ▬ │ 0 │ 1 │   │ ▬ │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Next, let us solve the "▬". If ([5th], [1st]) = (2,3):

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 0 │ 1 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

then we would fail to avoid ⛔「max ⊢2⊣ = 2」. Therefore, it has to be ([5th], [1st]) = (3,2):

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ ▬ │ 0 │ 1 │   │ ▬ │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ ▬ │ 0 │ 1 │   │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 3 │ 0 │ 1 │   │ 2 │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, to match ✅「⟨ ⁵ᵗʰa     ²ⁿᵈb     ⟩, max⟦a,b⟧ = 4」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 3 │ 0 │ 1 │   │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 3 │ 0 │ 1 │ 4 │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 3 │ 0 │ 1 │ 4 │ 2 │ 5 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.9