Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ³ʳᵈa ⁰ᵗʰb ⟩, min⟦a,b⟧ = 1
⛔Avoid
4th|2nd|1st|0th → 0
1st → 0|1|4
5th|4th|3rd|0th → 5
⟨⋯ 4 ⋯ a ⋯⟩, a = 0|1|2|3|5
0 ∾ 1 ∾ 3 ∾ 4 ∾ 5
⟨⋯ ? ⋯ 3 ⋯ (?+3)⟩ (?≠0)
#125034_v2.9
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ 0 │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ 0 │ │ │ 1 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ 0 │ │ │ 1 │ 5 │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 0 │ │ 3 │ 1 │ 5 │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 0 │ 2 │ 3 │ 1 │ 5 │ 4 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2025-05-06 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. Note that to avoid ⛔「⟨⋯ 4 ⋯ a ⋯⟩, a = 0|1|2|3|5」, we need 4 is in the right corner (0th): ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 4 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 5 │ 0 │ 3 │ │ └───┴───┴───┴───┴───┴───┘ Then, to match ✅「⟨ ³ʳᵈa ⁰ᵗʰb ⟩, min⟦a,b⟧ = 1」, we need 0 = [5th] | [4th]: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ ▬ │ ▬ │ │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ In view of ⛔「4th|2nd|1st|0th → 0」, it is 0 = [5th] actually: ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ 0 │ │ │ │ │ 4 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 5 │ │ 3 │ │ └───┴───┴───┴───┴───┴───┘ Next, we consider where to place 1. Combining ✅「⟨ ³ʳᵈa ⁰ᵗʰb ⟩, min⟦a,b⟧ = 1」 with ⛔「1st → 0|1|4」, we see that (1) 1 = [3rd] | [2nd]. ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ │ ▬ │ ▬ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ (2) We show that 1 = [2nd] actually. ------------------------------ Suppose on the contrary 1 = [3rd]: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ │ 1 │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ Then, to avoid ⛔「⟨⋯ ? ⋯ 3 ⋯ (?+3)⟩ (?≠0)」, we need ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 3 │ 1 │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ However, in view of cycle decomposition, observe that we now have (A) 0 ∾ 4 ∾ 5, and (B) 1 ∾ 3 ∾ 4. Consequently, we fail to avoid ⛔「0 ∾ 1 ∾ 3 ∾ 4 ∾ 5」, which is a contradiction. ------------------------------ We have verified (2). Accordingly, we get ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ 0 │ │ │ 1 │ │ 4 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ │ 3 │ │ └───┴───┴───┴───┴───┴───┘ Then, it follows from ⛔「5th|4th|3rd|0th → 5」 that 5 = [1st]: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ │ │ 1 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ 0 │ │ │ 1 │ 5 │ 4 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 3 │ │ └───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「0 ∾ 1 ∾ 3 ∾ 4 ∾ 5」, we finish by ┌───┬───┬───┬───┬───┬───┐ │5th│ 4■│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ │ │ 1 │ 5 │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 0 │ │ 3 │ 1 │ 5 │ 4 │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 0 │ 2 │ 3 │ 1 │ 5 │ 4 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.9