Web link

2025-05-06 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨     ³ʳᵈa     ⁰ᵗʰb ⟩, min⟦a,b⟧ = 1

⛔Avoid
4th|2nd|1st|0th → 0
1st → 0|1|4
5th|4th|3rd|0th → 5
⟨⋯ 4 ⋯ a ⋯⟩, a = 0|1|2|3|5
0 ∾ 1 ∾ 3 ∾ 4 ∾ 5
⟨⋯ ? ⋯ 3 ⋯ (?+3)⟩ (?≠0)

#125034_v2.9


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 0 │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 0 │   │   │ 1 │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 0 │   │   │ 1 │ 5 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 0 │   │ 3 │ 1 │ 5 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 0 │ 2 │ 3 │ 1 │ 5 │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-05-06 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

Note that to avoid ⛔「⟨⋯ 4 ⋯ a ⋯⟩, a = 0|1|2|3|5」, we need 4 is in the right corner (0th):

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │ 0 │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「⟨     ³ʳᵈa     ⁰ᵗʰb ⟩, min⟦a,b⟧ = 1」, we need 0 = [5th] | [4th]:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ ▬ │ ▬ │   │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

In view of ⛔「4th|2nd|1st|0th → 0」, it is 0 = [5th] actually:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 0 │   │   │   │   │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Next, we consider where to place 1. Combining ✅「⟨     ³ʳᵈa     ⁰ᵗʰb ⟩, min⟦a,b⟧ = 1」 with ⛔「1st → 0|1|4」, we see that

(1) 1 = [3rd] | [2nd].

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │   │ ▬ │ ▬ │   │ 4 │
└───┴───┴───┴───┴───┴───┘

(2) We show that 1 = [2nd] actually.

------------------------------

Suppose on the contrary 1 = [3rd]:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │   │ 1 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to avoid ⛔「⟨⋯ ? ⋯ 3 ⋯ (?+3)⟩ (?≠0)」, we need

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 3 │ 1 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

However, in view of cycle decomposition, observe that we now have

(A) 0 ∾ 4 ∾ 5, and
(B) 1 ∾ 3 ∾ 4.

Consequently, we fail to avoid ⛔「0 ∾ 1 ∾ 3 ∾ 4 ∾ 5」, which is a contradiction.

------------------------------

We have verified (2). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 0 │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 0 │   │   │ 1 │   │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Then, it follows from ⛔「5th|4th|3rd|0th → 5」 that 5 = [1st]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 0 │   │   │ 1 │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 0 │   │   │ 1 │ 5 │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「0 ∾ 1 ∾ 3 ∾ 4 ∾ 5」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 0 │   │   │ 1 │ 5 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 0 │   │ 3 │ 1 │ 5 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 0 │ 2 │ 3 │ 1 │ 5 │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.9