Web link

2025-04-15 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
{p4, p2, p1} = ? + {0,1,2}
⟨⋯ Perm(0,1,4) ⋯⟩
3rd → a, 2nd → b, a+b=3

⛔Avoid
4th → a, 2nd → b, ab=0+4n

#125034_v2.8


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │ 3 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │ 0 │ 3 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 1 │ 0 │ 3 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 1 │ 0 │ 3 │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 1 │ 0 │ 3 │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 0 │ 3 │ 2 │ 5 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-04-15 WR
══════════════════════

Notation: if Nth -> a, then we write pN = a.

By ✅「{p4, p2, p1} = ? + {0,1,2}」, we see that

(1) S := {p4, p2, p1} consists of consecutive integers.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │ ▬ │ ▬ │   │
└───┴───┴───┴───┴───┴───┘

(2) We claim that 4 ∉ S.

------------------------------

For, suppose on the contrary 4 ∈ S. To avoid ⛔「4th → a, 2nd → b, ab=0+4n」, 4 is not at 4th; and to match ✅「3rd → a, 2nd → b, a+b=3」, it is not at 2nd. Therefore, 4 = p1:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │ ▬ │ 4 │   │
└───┴───┴───┴───┴───┴───┘

As S consists of consecutive integers, there are two possibilities:

S = {2,3,4} or {3,4,5}.

However, regardless of which case happens, we would fail to match ✅「⟨⋯ Perm(0,1,4) ⋯⟩」. This shows a contradiction.

------------------------------

We have verified (2). It follows that

(3) S = {0,1,2} or {1,2,3}.

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │ ▬ │ ▬ │   │
└───┴───┴───┴───┴───┴───┘

As a result, we have 1,2 ∈ S. A fortiori,

(4) p3 != 1 and p3 != 2.

Observe that to match ✅「3rd → a, 2nd → b, a+b=3」, we need {p3,p2} = {0,3} or {1,2}. In view of (4), indeed

(5) {p3,p2} = {0,3}.

To avoid ⛔「4th → a, 2nd → b, ab=0+4n」, we need p2 != 0. Therefore, it follows from (5) that (p3,p2) = (0,3):

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │ 3 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │ 0 │ 3 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, using (3), we get S = {1,2,3}. It follows two cases:

    ┌───┬───┬───┬───┬───┬───┐
    │5th│ 4▲│3rd│2nd│ 1▲│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╡
(6) │   │ 2 │ 0 │ 3 │ 1 │   │
    ├───┼───┼───┼───┼───┼───┤
(7) │   │ 1 │ 0 │ 3 │ 2 │   │
    └───┴───┴───┴───┴───┴───┘

In view of ✅「⟨⋯ Perm(0,1,4) ⋯⟩」, case (7) holds and we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │ 0 │ 3 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 1 │ 0 │ 3 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 1 │ 0 │ 3 │ 2 │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, to match ✅「⟨⋯ Perm(0,1,4) ⋯⟩」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │ 0 │ 3 │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 1 │ 0 │ 3 │ 2 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 0 │ 3 │ 2 │ 5 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.8