Web link

2025-04-08 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
1st → a, 0th → b, a+b=3+4n
⟨     ³ʳᵈb ²ⁿᵈa ¹ˢᵗc   ⟩, a > b > c

⛔Avoid
⟨         ¹ˢᵗa ⁰ᵗʰb ⟩, a > b
⟨   ⁴ᵗʰa ³ʳᵈb     ⁰ᵗʰc ⟩, (abc)₁₀ ≤ 254
3rd|2nd|1st|0th → 3

#125034_v2.8


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 0 │   │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 0 │ 3 │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 0 │ 3 │   │ 5 │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 0 │ 3 │ 4 │ 5 │ 1 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-04-08 WR
══════════════════════

By ✅「1st → a, 0th → b, a+b=3+4n」, we have [1st] + [0th] = 3|7. Therefore, for S := {[1st], [0th]}, one of the following holds:

(A) S = {2,5}
(B) S = {3,4}
(C) S = {0,3}
(D) S = {1,2}

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │   │ ▬ │ ▬ │
└───┴───┴───┴───┴───┴───┘

(1) We show that case (D) holds actually.

------------------------------

Firstly, note that by ⛔「3rd|2nd|1st|0th → 3」, cases (B) and (C) do not hold. Secondly, if (A) holds, then using ✅「⟨     ³ʳᵈb ²ⁿᵈa ¹ˢᵗc   ⟩, a > b > c」 and that 5 is not less than any other digit, we get

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│ 1▲│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │   │ 2 │ 5 │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

The preceding required pattern then implies:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 3 │ 4 │ 2 │ 5 │
└───┴───┴───┴───┴───┴───┘

But this matches ⛔「3rd|2nd|1st|0th → 3」, which is a contradiction.

------------------------------

We have verified (1). Accordingly, {[1st], [0th]} = S = {1,2}. To avoid ⛔「⟨         ¹ˢᵗa ⁰ᵗʰb ⟩, a > b」, we need [1st] < [0th]. Therefore, we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│ 1■│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │   │   │ 1 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, we consider where to place 0. As 0 is the minimum digit, so by✅「⟨     ³ʳᵈb ²ⁿᵈa ¹ˢᵗc   ⟩, a > b > c」, it is not at 3rd or 2nd. It is not at 4th as well, in view of ⛔「⟨   ⁴ᵗʰa ³ʳᵈb     ⁰ᵗʰc ⟩, (abc)₁₀ ≤ 254」. Therefore, 0 = [5th]:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 0 │   │   │   │ 1 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

It then follows from ⛔「3rd|2nd|1st|0th → 3」 that 3 = [4th]:

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 0 │   │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 0 │ 3 │   │   │ 1 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │   │ 4 │
└───┴───┴───┴───┴───┴───┘

Finally, using ✅「⟨     ³ʳᵈb ²ⁿᵈa ¹ˢᵗc   ⟩, a > b > c」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 0 │ 3 │   │   │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 0 │ 3 │   │ 5 │ 1 │ 2 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 0 │ 3 │ 4 │ 5 │ 1 │ 2 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.8