Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1
min ⊢4⊣ ≤ 1
⟨⋯ 0 ⋯ a ⋯⟩, a = 2|3
5th → 0|2|4
⟨ ⁴ᵗʰa ¹ˢᵗb ⟩, max⟦a,b⟧ = 5
⛔Avoid
{p4, p1, p0} = ? + {0,1,2}
⟨? 5 ⋯ (?+1) ⋯ 1 ⋯⟩ (?≠4)
1st → a, 0th → b, |a-b|=2
Jump(3,4) ≥ 2
max ⊢4⊣ = 4
#125034_v2.8
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 2 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ │ │ 5 │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ │ │ 5 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ │ 3 │ 5 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 0 │ 3 │ 5 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 0 │ 3 │ 5 │ 4 │ 1 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2025-04-01 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. By ⛔「max ⊢4⊣ = 4」, 4 is adjacent to 5. Combining this with ✅「min ⊢4⊣ ≤ 1」, we see that one of the following holds: (1) (A) ⟨⋯ 045 ⋯⟩ (B) ⟨⋯ 145 ⋯⟩ (C) ⟨⋯ 540 ⋯⟩ (D) ⟨⋯ 541 ⋯⟩. A fortiori, 4 is not in the left corner (5th). So, ✅「5th → 0|2|4」 implies [5th] = 0|2. (2) We claim that [5th] = 2. ------------------------------ For, suppose on the contrary [5th] = 0: ┌───┬───┬───┬───┬───┬───┐ │ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 5 │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ We show that it will result in contradiction no matter what [4th] is. (2.1) If [4th] = 1: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 1 │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ then by (1), we get ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 1 │ 4 │ 5 │ │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 3 │ │ └───┴───┴───┴───┴───┴───┘ It will match ⛔「{p4, p1, p0} = ? + {0,1,2}」, which is a contradiction. ------------------------------ (2.2) Else if [4th] = 2: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 2 │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ then we will fail to match ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」. ------------------------------ (2.3) Else if [4th] = 3: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 3 │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ then in view of ⛔「Jump(3,4) ≥ 2」, we have 4 = [3rd] | [2nd]: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 3 │ ▬ │ ▬ │ │ │ └───┴───┴───┴───┴───┴───┘ Combining this with (1), we get 4 = [2nd]: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 3 │ │ 4 │ │ │ └───┴───┴───┴───┴───┴───┘ But again, we will fail to match ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」. ------------------------------ (2.4) Else if [4th] = 4: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 4 │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ then (1) implies ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 4 │ 5 │ │ │ │ └───┴───┴───┴───┴───┴───┘ Again we fail to match ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」. ------------------------------ (2.5) Lastly, if [4th] = 5: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 5 │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ then (1) implies ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 5 │ 4 │ 1 │ │ │ └───┴───┴───┴───┴───┴───┘ In view of ⛔「⟨? 5 ⋯ (?+1) ⋯ 1 ⋯⟩ (?≠4)」, it is a contradiction. ------------------------------ By (2.1)-(2.5), we have verified (2). Accordingly, we get ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 2 │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ 5 │ 0 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ Next, we consider where to place 5. By ✅「⟨ ⁴ᵗʰa ¹ˢᵗb ⟩, max⟦a,b⟧ = 5」, we have 5 = [4th] | [3rd] | [2nd] | [1st]. (3) We show by contradiction that 5 = [2nd]. ------------------------------ (3.1) If 5 = [4th]: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 5 │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ then (1) implies ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 5 │ 4 │ ▬ │ │ │ └───┴───┴───┴───┴───┴───┘ where ▬ is 0 or 1. It then follows from ⛔「Jump(3,4) ≥ 2」 that ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 5 │ 4 │ ▬ │ 3 │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┘ To match ✅「⟨⋯ 0 ⋯ a ⋯⟩, a = 2|3」, we end at ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 5 │ 4 │ 0 │ 3 │ 1 │ └───┴───┴───┴───┴───┴───┘ It fails to avoid ⛔「⟨? 5 ⋯ (?+1) ⋯ 1 ⋯⟩ (?≠4)」, which is a contradiction. ------------------------------ (3.2) Else if 5 = [3rd]: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ 5 │ │ │ │ └───┴───┴───┴───┴───┴───┘ Then in view of (1), we have ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ 5 │ 4 │ │ │ └───┴───┴───┴───┴───┴───┘ We fail to match ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」 now, which is a contradiction. ------------------------------ (3.3) Lastly, if 5 = [1st]: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ │ │ 5 │ │ └───┴───┴───┴───┴───┴───┘ then (1) implies ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ ▬ │ 4 │ 5 │ │ └───┴───┴───┴───┴───┴───┘ where ▬ is 0 or 1. Then, for the position of 3, in view of ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」, it has to be 4th: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 3 │ │ 4 │ 5 │ │ └───┴───┴───┴───┴───┴───┘ Note that we will fail to match ✅「⟨⋯ 0 ⋯ a ⋯⟩, a = 2|3」, which is a contradiction. ------------------------------ By (3.1)-(3.3), we have verified (3). So, we get ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ │ │ 5 │ │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 0 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ Now, by (1), we have two possibilities: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ (4) │ 2 │ ▬ │ 4 │ 5 │ │ │ ├───┼───┼───┼───┼───┼───┤ (5) │ 2 │ │ │ 5 │ 4 │ ▬ │ └───┴───┴───┴───┴───┴───┘ where ▬ is 0 or 1. Regardless of which case happens, by ⛔「Jump(3,4) ≥ 2」, we get ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ (6) │ 2 │ ▬ │ 4 │ 5 │ 3 │ │ ├───┼───┼───┼───┼───┼───┤ (7) │ 2 │ │ 3 │ 5 │ 4 │ ▬ │ └───┴───┴───┴───┴───┴───┘ To match ✅「⟨⋯ 0 ⋯ a ⋯⟩, a = 2|3」, 0 cannot be in the right corner (0th). Therefore, we obtain ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ (8) │ 2 │ 0 │ 4 │ 5 │ 3 │ 1 │ ├───┼───┼───┼───┼───┼───┤ (9) │ 2 │ 0 │ 3 │ 5 │ 4 │ 1 │ └───┴───┴───┴───┴───┴───┘ Since (8) matches ⛔「1st → a, 0th → b, |a-b|=2」, the answer is (9). Q.E.D. #125034_v2.8