Web link

2025-04-01 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1
min ⊢4⊣ ≤ 1
⟨⋯ 0 ⋯ a ⋯⟩, a = 2|3
5th → 0|2|4
⟨   ⁴ᵗʰa     ¹ˢᵗb   ⟩, max⟦a,b⟧ = 5

⛔Avoid
{p4, p1, p0} = ? + {0,1,2}
⟨? 5 ⋯ (?+1) ⋯ 1 ⋯⟩ (?≠4)
1st → a, 0th → b, |a-b|=2
Jump(3,4) ≥ 2
max ⊢4⊣ = 4

#125034_v2.8


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 2 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 2 │   │   │ 5 │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 2 │   │   │ 5 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 2 │   │ 3 │ 5 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 2 │ 0 │ 3 │ 5 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 2 │ 0 │ 3 │ 5 │ 4 │ 1 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-04-01 WR
══════════════════════

Notation: if nth -> a, then we write [nth] = a.

By ⛔「max ⊢4⊣ = 4」, 4 is adjacent to 5. Combining this with ✅「min ⊢4⊣ ≤ 1」, we see that one of the following holds:

(1) 

(A) ⟨⋯ 045 ⋯⟩
(B) ⟨⋯ 145 ⋯⟩
(C) ⟨⋯ 540 ⋯⟩
(D) ⟨⋯ 541 ⋯⟩.

A fortiori, 4 is not in the left corner (5th). So, ✅「5th → 0|2|4」 implies [5th] = 0|2.

(2) We claim that [5th] = 2.

------------------------------

For, suppose on the contrary [5th] = 0:

┌───┬───┬───┬───┬───┬───┐
│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

We show that it will result in contradiction no matter what [4th] is.

(2.1) If [4th] = 1:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 1 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

then by (1), we get

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 1 │ 4 │ 5 │   │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

It will match ⛔「{p4, p1, p0} = ? + {0,1,2}」, which is a contradiction.

------------------------------

(2.2) Else if [4th] = 2:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 2 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

then we will fail to match ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」.

------------------------------

(2.3) Else if [4th] = 3:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 3 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

then in view of ⛔「Jump(3,4) ≥ 2」, we have 4 = [3rd] | [2nd]:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 3 │ ▬ │ ▬ │   │   │
└───┴───┴───┴───┴───┴───┘

Combining this with (1), we get 4 = [2nd]:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 3 │   │ 4 │   │   │
└───┴───┴───┴───┴───┴───┘

But again, we will fail to match ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」.

------------------------------

(2.4) Else if [4th] = 4:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 4 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

then (1) implies

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 4 │ 5 │   │   │   │
└───┴───┴───┴───┴───┴───┘

Again we fail to match ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」.

------------------------------

(2.5) Lastly, if [4th] = 5:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 5 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

then (1) implies

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 5 │ 4 │ 1 │   │   │
└───┴───┴───┴───┴───┴───┘

In view of ⛔「⟨? 5 ⋯ (?+1) ⋯ 1 ⋯⟩ (?≠4)」, it is a contradiction.

------------------------------

By (2.1)-(2.5), we have verified (2). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 2 │   │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Next, we consider where to place 5. By ✅「⟨   ⁴ᵗʰa     ¹ˢᵗb   ⟩, max⟦a,b⟧ = 5」, we have

5 = [4th] | [3rd] | [2nd] | [1st].

(3) We show by contradiction that 5 = [2nd].

------------------------------

(3.1) If 5 = [4th]:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 5 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

then (1) implies

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 5 │ 4 │ ▬ │   │   │
└───┴───┴───┴───┴───┴───┘

where ▬ is 0 or 1. It then follows from ⛔「Jump(3,4) ≥ 2」 that

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 5 │ 4 │ ▬ │ 3 │   │
└───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

To match ✅「⟨⋯ 0 ⋯ a ⋯⟩, a = 2|3」, we end at

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 5 │ 4 │ 0 │ 3 │ 1 │
└───┴───┴───┴───┴───┴───┘

It fails to avoid ⛔「⟨? 5 ⋯ (?+1) ⋯ 1 ⋯⟩ (?≠4)」, which is a contradiction.

------------------------------

(3.2) Else if 5 = [3rd]:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │   │ 5 │   │   │   │
└───┴───┴───┴───┴───┴───┘

Then in view of (1), we have

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │   │ 5 │ 4 │   │   │
└───┴───┴───┴───┴───┴───┘

We fail to match ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」 now, which is a contradiction.

------------------------------

(3.3) Lastly, if 5 = [1st]:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │   │   │   │ 5 │   │
└───┴───┴───┴───┴───┴───┘

then (1) implies

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │   │ ▬ │ 4 │ 5 │   │
└───┴───┴───┴───┴───┴───┘

where ▬ is 0 or 1. Then, for the position of 3, in view of ✅「Sim⟨ ⁵ᵗʰ0 ⁴ᵗʰ2 ³ʳᵈ5 ²ⁿᵈ4 ¹ˢᵗ1 ⁰ᵗʰ3 ⟩ ≤ 1」, it has to be 4th:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 3 │   │ 4 │ 5 │   │
└───┴───┴───┴───┴───┴───┘

Note that we will fail to match ✅「⟨⋯ 0 ⋯ a ⋯⟩, a = 2|3」, which is a contradiction.

------------------------------

By (3.1)-(3.3), we have verified (3). So, we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 2 │   │   │ 5 │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Now, by (1), we have two possibilities:

    ┌───┬───┬───┬───┬───┬───┐
    │5th│4th│3rd│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╡
(4) │ 2 │ ▬ │ 4 │ 5 │   │   │
    ├───┼───┼───┼───┼───┼───┤
(5) │ 2 │   │   │ 5 │ 4 │ ▬ │
    └───┴───┴───┴───┴───┴───┘

where ▬ is 0 or 1. Regardless of which case happens, by ⛔「Jump(3,4) ≥ 2」, we get

    ┌───┬───┬───┬───┬───┬───┐
    │5th│4th│3rd│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╡
(6) │ 2 │ ▬ │ 4 │ 5 │ 3 │   │
    ├───┼───┼───┼───┼───┼───┤
(7) │ 2 │   │ 3 │ 5 │ 4 │ ▬ │
    └───┴───┴───┴───┴───┴───┘

To match ✅「⟨⋯ 0 ⋯ a ⋯⟩, a = 2|3」, 0 cannot be in the right corner (0th). Therefore, we obtain

    ┌───┬───┬───┬───┬───┬───┐
    │5th│4th│3rd│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╡
(8) │ 2 │ 0 │ 4 │ 5 │ 3 │ 1 │
    ├───┼───┼───┼───┼───┼───┤
(9) │ 2 │ 0 │ 3 │ 5 │ 4 │ 1 │
    └───┴───┴───┴───┴───┴───┘

Since (8) matches ⛔「1st → a, 0th → b, |a-b|=2」, the answer is (9).

Q.E.D.

#125034_v2.8