Web link

2025-03-11 WR

Rearrange the digits in ⟨125034⟩ to meet the rules below.

⟨5th 4th 3rd 2nd 1st 0th⟩

✅Match
Jump(0,4) ≥ 2
5th → 2|5

⛔Avoid
{p5, p3, p2} = ? + {0,2,3}
⟨ ⁵ᵗʰa   ³ʳᵈb       ⟩, max⟦a,b⟧ = 4
⟨ ⁵ᵗʰa   ³ʳᵈb   ¹ˢᵗc   ⟩, (abc)₁₀ ≥ 435
⟨⋯ 2 ⋯ 0 ⋯ 1 ⋯⟩
median {p2, p1, p0} = 1

#125034_v2.8


       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 2 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 2 │   │ 0 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 2 │ 1 │ 0 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 2 │ 1 │ 0 │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 2 │ 1 │ 0 │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 2 │ 1 │ 0 │ 5 │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2025-03-11 WR
══════════════════════

Notation: if Nth -> a, then we write pN = a.

Plainly, the first step follows from combining ✅「5th → 2|5」 and ⛔「⟨ ⁵ᵗʰa   ³ʳᵈb   ¹ˢᵗc   ⟩, (abc)₁₀ ≥ 435」:

       ┌───┬───┬───┬───┬───┬───┐
       │ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 2 │   │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │ 0 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, we consider where to place 0. There are five possible cases:

0 = p4 | p3 | p2 | p1 | p0.

(1) We show that 0 = p3 actually.

------------------------------

(1.1) Suppose otherwise that 0 = p1 | p0:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│2nd│ 1▲│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │   │   │   │ ▬ │ ▬ │
└───┴───┴───┴───┴───┴───┘

Then, to match ✅「Jump(0,4) ≥ 2」, we need 4∈{p4, p3}. On the other hand, to avoid ⛔「median {p2, p1, p0} = 1」, we need 1∉{p2,p1,p0}. It follows that both 4 and 1 are in {p4, p3}. However, it would match ⛔「⟨ ⁵ᵗʰa   ³ʳᵈb       ⟩, max⟦a,b⟧ = 4」, which is a contradiction.

(1.2) Else if 0 = p2:

┌───┬───┬───┬───┬───┬───┐
│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┘

then it cannot match ✅「Jump(0,4) ≥ 2」.

(1.3) Else if 0 = p4:

┌───┬───┬───┬───┬───┬───┐
│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 0 │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

then it would match ⛔「⟨⋯ 2 ⋯ 0 ⋯ 1 ⋯⟩」.

------------------------------

By (1.1), (1.2) and (1.3), we have verified the claim in (1). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 2 │ 2 │   │ 0 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│ 1 │   │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

Then, to avoid ⛔「⟨⋯ 2 ⋯ 0 ⋯ 1 ⋯⟩」, we need to have

       ┌───┬───┬───┬───┬───┬───┐
       │5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │   │ 0 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 3 │ 2 │ 1 │ 0 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┘

and to match ✅「Jump(0,4) ≥ 2」, we need

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │ 1 │ 0 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 4 │ 2 │ 1 │ 0 │   │   │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │ 5 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「{p5, p3, p2} = ? + {0,2,3}」, we finish by

       ┌───┬───┬───┬───┬───┬───┐
       │5th│4th│3rd│ 2■│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │ 1 │ 0 │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 5 │ 2 │ 1 │ 0 │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┤▒
Step 6 │ 2 │ 1 │ 0 │ 5 │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.8