Web link

2024-12-24 Q1(m=6)

Rearrange the digits in ⟨1263045⟩ to meet the rules below.

⟨6th 5th 4th 3rd 2nd 1st 0th⟩

✅Match
Jump(2,3) ≥ 3
3rd|0th → 4
⟨? ⋯ 6 (?−2) ⋯ 4 ⋯⟩ (?≠6)

⛔Avoid
4th → a, 1st → b, |a-b|=1
⟨ ⁶ᵗʰa ⁵ᵗʰb     ²ⁿᵈc     ⟩, (abc)₁₀ ≥ 435
⟨⋯ a ⋯ 1 ⋯⟩, a = 0|4|6
min ⊢5⊣ = 1

#125034_v2.8


       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 2 │   │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │ 2 │   │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ 2 │ 1 │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 2 │ 1 │ 6 │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 2 │ 1 │ 6 │ 0 │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 2 │ 1 │ 6 │ 0 │ 5 │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 2 │ 1 │ 6 │ 0 │ 5 │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2024-12-24 Q1(m=6)
═══════════════════════════

Notation: if nth -> a, then we write [nth] = a.

We first consider what [6th] is. By ⛔「⟨ ⁶ᵗʰa ⁵ᵗʰb     ²ⁿᵈc     ⟩, (abc)₁₀ ≥ 435」 and ✅「⟨? ⋯ 6 (?−2) ⋯ 4 ⋯⟩ (?≠6)」, we have 

(1) [6th] = 3|2.

If [6th] = 3, then ✅「⟨? ⋯ 6 (?−2) ⋯ 4 ⋯⟩ (?≠6)」 implies that we have the block "61". But then we cannot avoid ⛔「⟨⋯ a ⋯ 1 ⋯⟩, a = 0|4|6」, which is a contradiction. Therefore, [6th] = 2:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │ 6■│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ 2 │   │   │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │   │ 6 │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Then, by combining ✅「⟨? ⋯ 6 (?−2) ⋯ 4 ⋯⟩ (?≠6)」 and ⛔「⟨⋯ a ⋯ 1 ⋯⟩, a = 0|4|6」, we have the following required pattern:

(2) ⟨2 ⋯ 1 ⋯ 60 ⋯ 4 ⋯⟩.

To match (2), we need to reserve boxes to the right of 4 for placing 1,6,0. Therefore, ✅「3rd|0th → 4」 implies 

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │   │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │ 2 │   │   │   │   │   │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │   │ 6 │ 3 │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Then, we consider where to place 1. By (2), there are three possibilities:

    ┌───┬───┬───┬───┬───┬───┬───┐
    │6th│ 5▲│ 4▲│ 3▲│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
(3) │ 2 │   │   │ 1 │   │   │ 4 │
    ├───┼───┼───┼───┼───┼───┼───┤
(4) │ 2 │   │ 1 │   │   │   │ 4 │
    ├───┼───┼───┼───┼───┼───┼───┤
(5) │ 2 │ 1 │   │   │   │   │ 4 │
    └───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │ 3 │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

(6) We show that case (5) holds actually.

------------------------------

Note that by ✅「Jump(2,3) ≥ 3」, we need

(7) 3 = [2nd] | [1st].

Therefore, case (3) cannot happen, for otherwise we cannot match (7) and (2) at the same time. On the other hand, if case (4) happens, then (7) and (2) gives

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 5 │ 1 │ ▬ │ ▬ │ ▬ │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

where "▬" are occupied by 3,6,0. It has matched ⛔「min ⊢5⊣ = 1」, which is a contradiction.

------------------------------

We have verified (6). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │   │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ 2 │ 1 │   │   │   │   │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │ 3 │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Then, we consider how to place 6. Combining (2) and (7), we see that there are two possibilities:

    ┌───┬───┬───┬───┬───┬───┬───┐
    │6th│5th│ 4▲│ 3▲│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
(8) │ 2 │ 1 │   │ 6 │ 0 │ 3 │ 4 │
    ├───┼───┼───┼───┼───┼───┼───┤
(9) │ 2 │ 1 │ 6 │ 0 │   │   │ 4 │
    └───┴───┴───┴───┴───┴───┴───┘

Actually case (8) does not hold, for otherwise it would match ⛔「min ⊢5⊣ = 1」. Therefore, case (9) holds and we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│ 4■│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │ 1 │   │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 2 │ 1 │ 6 │   │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 2 │ 1 │ 6 │ 0 │   │   │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Finally, in view of ⛔「4th → a, 1st → b, |a-b|=1」, we finish by

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│ 2■│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │ 1 │ 6 │ 0 │   │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 2 │ 1 │ 6 │ 0 │ 5 │   │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 2 │ 1 │ 6 │ 0 │ 5 │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.8