Web link

2024-12-17 Q1(m=6)

Rearrange the digits in ⟨1263045⟩ to meet the rules below.

⟨6th 5th 4th 3rd 2nd 1st 0th⟩

✅Match
{p5, p3, p2, p1} = ? + {0,1,2,4}
⟨⋯ 2 ⋯ ? 6 ⋯ (?+4)⟩ (?≠2)

⛔Avoid
Jump(1,4) = 1

#125034_v2.8


       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │   │ 6 │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │   │ 1 │ 6 │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 2 │ 1 │ 6 │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 0 │ 2 │ 1 │ 6 │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 0 │ 2 │ 1 │ 6 │   │ 4 │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 0 │ 2 │ 1 │ 6 │ 3 │ 4 │ 5 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2024-12-17 Q1(m=6)
═══════════════════════════

Notation: if nth -> a, then we write [nth] = a.

By ✅「⟨⋯ 2 ⋯ ? 6 ⋯ (?+4)⟩ (?≠2)」, one of the following holds:

(A) ⟨⋯ 2 ⋯ 0 6 ⋯ 4⟩;
(B) ⟨⋯ 2 ⋯ 1 6 ⋯ 5⟩.

(1) We show that case (B) happens actually.

------------------------------

If on the contrary case (A) happens, then combining it with ✅「{p5, p3, p2, p1} = ? + {0,1,2,4}」, we have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │ ▬ │ ▬ │ ▬ │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

where "▬" are occupied by 1,2,3,5. Note that to match (A), we need two consecutive boxes for placing 06. Now we are unable to do so, therefore it is a contradiction.

------------------------------

We have checked (1). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │   │ 5 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 6 │ 3 │ 0 │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

Then, ✅「{p5, p3, p2, p1} = ? + {0,1,2,4}」 implies S := {p5,p3,p2,p1} = {0,1,2,4} or {2,3,4,6}.

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │ ▬ │ ▬ │ ▬ │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Note that to match (B), we need to have the block "16" and place it to the right of 2. There is no way to do so if S = {0,1,2,4}. On the other hand, if S = {2,3,4,6}, there is exactly one way to meet the requirement:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│ 5■│ 4■│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │   │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │   │ 6 │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │   │ 1 │ 6 │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 2 │ 1 │ 6 │   │   │ 5 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │ 0 │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

We know that S = {2,3,4,6}, so {[2nd], [1st]} = {3,4}. It follows that [6th] = 0:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │ 6■│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 2 │ 1 │ 6 │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 0 │ 2 │ 1 │ 6 │   │   │ 5 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

Finally, in view of ⛔「Jump(1,4) = 1」, we finish by

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│ 2■│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 0 │ 2 │ 1 │ 6 │   │   │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 0 │ 2 │ 1 │ 6 │   │ 4 │ 5 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 0 │ 2 │ 1 │ 6 │ 3 │ 4 │ 5 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.8