Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 5 ⋯ ? ⋯ 6 (?−4)⟩ (?≠6)
⟨⋯ ? ⋯ 4 ⋯ (?−1)⟩ (?≠4,5)
⟨⋯ Perm(0,2,4) ⋯⟩
Jump(1,2) = 4
⛔Avoid
0 ∾ 2 ∾ 3 ∾ 6
⟨⋯ 0 ⋯ 4 ⋯ 5 ⋯ 1 ⋯⟩
#125034_v2.7
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 6 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 2 │ │ │ │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 2 │ 4 │ │ │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 2 │ 4 │ 0 │ │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 2 │ 4 │ 0 │ 5 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 2 │ 4 │ 0 │ 5 │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-12-10 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, our step 1 follows from ✅「⟨⋯ 5 ⋯ ? ⋯ 6 (?−4)⟩ (?≠6)」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 6 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「Jump(1,2) = 4」, we have to use the 5th and 0th positions: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ ▬ │ │ │ │ 6 │ ▬ │ └───┴───┴───┴───┴───┴───┴───┘ By ✅「⟨⋯ 5 ⋯ ? ⋯ 6 (?−4)⟩ (?≠6)」, we have [0th]<=1. Therefore, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ 6 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 2 │ │ │ │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, note that ✅「⟨⋯ ? ⋯ 4 ⋯ (?−1)⟩ (?≠4,5)」 becomes (1) ⟨⋯ 2 ⋯ 4 ⋯ 1⟩. Combining this with ✅「⟨⋯ Perm(0,2,4) ⋯⟩」, there are two possibilities: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (2) │ │ 2 │ 4 │ │ │ 6 │ 1 │ ├───┼───┼───┼───┼───┼───┼───┤ (3) │ │ 2 │ │ 4 │ │ 6 │ 1 │ └───┴───┴───┴───┴───┴───┴───┘ (4) We show that (2) holds actually. ------------------------------ If (3) holds on the contrary, then by ✅「⟨⋯ Perm(0,2,4) ⋯⟩」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 2 │ 0 │ 4 │ │ 6 │ 1 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ To avoid ⛔「⟨⋯ 0 ⋯ 4 ⋯ 5 ⋯ 1 ⋯⟩」, we reach ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 5 │ 2 │ 0 │ 4 │ 3 │ 6 │ 1 │ └───┴───┴───┴───┴───┴───┴───┘ It is a contradiction, however, as it matches ⛔「0 ∾ 2 ∾ 3 ∾ 6」. ------------------------------ We have verified (4). Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 4 │ │ 2 │ 4 │ │ │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, we consider where to place 0. To match ✅「⟨⋯ Perm(0,2,4) ⋯⟩」 and avoid ⛔「⟨⋯ 0 ⋯ 4 ⋯ 5 ⋯ 1 ⋯⟩」 at the same time, we have to place it at 3rd: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 2 │ 4 │ │ │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 2 │ 4 │ 0 │ │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「0 ∾ 2 ∾ 3 ∾ 6」, we place 5 at [2nd] to form the cycle 2 ∾ 5. We finish by ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 2 │ 4 │ 0 │ │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 2 │ 4 │ 0 │ 5 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 2 │ 4 │ 0 │ 5 │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.7