Web link

2024-12-10 Q1(m=6)

Rearrange the digits in ⟨1263045⟩ to meet the rules below.

⟨6th 5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨⋯ 5 ⋯ ? ⋯ 6 (?−4)⟩ (?≠6)
⟨⋯ ? ⋯ 4 ⋯ (?−1)⟩ (?≠4,5)
⟨⋯ Perm(0,2,4) ⋯⟩
Jump(1,2) = 4

⛔Avoid
0 ∾ 2 ∾ 3 ∾ 6
⟨⋯ 0 ⋯ 4 ⋯ 5 ⋯ 1 ⋯⟩

#125034_v2.7


       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 6 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │   │   │   │ 6 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 2 │   │   │   │ 6 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 2 │ 4 │   │   │ 6 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │   │ 2 │ 4 │ 0 │   │ 6 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │   │ 2 │ 4 │ 0 │ 5 │ 6 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 3 │ 2 │ 4 │ 0 │ 5 │ 6 │ 1 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2024-12-10 Q1(m=6)
═══════════════════════════

Notation: if nth -> a, then we write [nth] = a.

Plainly, our step 1 follows from ✅「⟨⋯ 5 ⋯ ? ⋯ 6 (?−4)⟩ (?≠6)」:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 6 │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Then, to match ✅「Jump(1,2) = 4」, we have to use the 5th and 0th positions:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5▲│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │   │   │   │ 6 │ ▬ │
└───┴───┴───┴───┴───┴───┴───┘

By ✅「⟨⋯ 5 ⋯ ? ⋯ 6 (?−4)⟩ (?≠6)」, we have [0th]<=1. Therefore, we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│ 5■│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │   │   │ 6 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │   │   │   │ 6 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 2 │   │   │   │ 6 │ 1 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Then, note that ✅「⟨⋯ ? ⋯ 4 ⋯ (?−1)⟩ (?≠4,5)」 becomes

(1) ⟨⋯ 2 ⋯ 4 ⋯ 1⟩.

Combining this with ✅「⟨⋯ Perm(0,2,4) ⋯⟩」, there are two possibilities:

    ┌───┬───┬───┬───┬───┬───┬───┐
    │6th│5th│ 4▲│ 3▲│2nd│1st│0th│
    ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
(2) │   │ 2 │ 4 │   │   │ 6 │ 1 │
    ├───┼───┼───┼───┼───┼───┼───┤
(3) │   │ 2 │   │ 4 │   │ 6 │ 1 │
    └───┴───┴───┴───┴───┴───┴───┘

(4) We show that (2) holds actually.

------------------------------

If (3) holds on the contrary, then by ✅「⟨⋯ Perm(0,2,4) ⋯⟩」, we get

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 2 │ 0 │ 4 │   │ 6 │ 1 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

To avoid ⛔「⟨⋯ 0 ⋯ 4 ⋯ 5 ⋯ 1 ⋯⟩」, we reach

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 2 │ 0 │ 4 │ 3 │ 6 │ 1 │
└───┴───┴───┴───┴───┴───┴───┘

It is a contradiction, however, as it matches ⛔「0 ∾ 2 ∾ 3 ∾ 6」.

------------------------------

We have verified (4). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 4 │   │ 2 │ 4 │   │   │ 6 │ 1 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Then, we consider where to place 0. To match ✅「⟨⋯ Perm(0,2,4) ⋯⟩」 and avoid ⛔「⟨⋯ 0 ⋯ 4 ⋯ 5 ⋯ 1 ⋯⟩」 at the same time, we have to place it at 3rd:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 2 │ 4 │   │   │ 6 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │   │ 2 │ 4 │ 0 │   │ 6 │ 1 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「0 ∾ 2 ∾ 3 ∾ 6」, we place 5 at [2nd] to form the cycle 2 ∾ 5. We finish by

       ┌───┬───┬───┬───┬───┬───┬───┐
       │ 6■│5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 2 │ 4 │ 0 │   │ 6 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │   │ 2 │ 4 │ 0 │ 5 │ 6 │ 1 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 3 │ 2 │ 4 │ 0 │ 5 │ 6 │ 1 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.7