Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
Jump(3,5) ≤ 1
⟨? ⋯ 2 ⋯ (?+4) ⋯⟩ (?≠2)
⟦0,6⟧ ∋ 4,5
⟦2,3⟧ ∋ 1,5,6
⛔Avoid
min {p5, p3, p1} = 1
#125034_v2.7
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 0 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 0 │ 2 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 0 │ 2 │ │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 0 │ 2 │ │ │ 5 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 0 │ 2 │ │ │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 0 │ 2 │ 1 │ │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 0 │ 2 │ 1 │ 4 │ 5 │ 6 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-11-26 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「⟨? ⋯ 2 ⋯ (?+4) ⋯⟩ (?≠2)」, we have [6th] = 0|1. As 1 is not at corners by ✅「⟦2,3⟧ ∋ 1,5,6」, we get [6th] = 0: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 0 │ │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「⟦2,3⟧ ∋ 1,5,6」, there are three possible ways to place 2 and 3: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (1) │ 0 │ ▲ │ │ │ │ ▲ │ │ ├───┼───┼───┼───┼───┼───┼───┤ (2) │ 0 │ │ ▲ │ │ │ │ ▲ │ ├───┼───┼───┼───┼───┼───┼───┤ (3) │ 0 │ ▲ │ │ │ │ │ ▲ │ └───┴───┴───┴───┴───┴───┴───┘ Case (3) holds actually, for otherwise we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (4) │ 0 │ ▲ │156│156│156│ ▲ │ 4 │ ├───┼───┼───┼───┼───┼───┼───┤ (5) │ 0 │ 4 │ ▲ │156│156│156│ ▲ │ └───┴───┴───┴───┴───┴───┴───┘ Note that (4) does not match ✅「⟦0,6⟧ ∋ 4,5」 and (5) does not match ✅「⟨? ⋯ 2 ⋯ (?+4) ⋯⟩ (?≠2)」. So they are contradictions. Combining (3) with ✅「⟨? ⋯ 2 ⋯ (?+4) ⋯⟩ (?≠2)」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 0 │ 2 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 0 │ 2 │ │ │ │ │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「Jump(3,5) ≤ 1」, we have 5 = [2nd] | [1st]. We would fail to match ✅「⟦0,6⟧ ∋ 4,5」 if 5 = [1st]. Therefore, 5 = [2nd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ 2 │ │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 0 │ 2 │ │ │ 5 │ │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, it follows from ✅「⟦0,6⟧ ∋ 4,5」 that [1st] = 6: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ 2 │ │ │ 5 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 0 │ 2 │ │ │ 5 │ 6 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, in view of ⛔「min {p5, p3, p1} = 1」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ 2 │ │ │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 0 │ 2 │ 1 │ │ 5 │ 6 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 0 │ 2 │ 1 │ 4 │ 5 │ 6 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.7
No comments:
Post a Comment