Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
6th|5th|2nd|0th → 4
⟨ ⁶ᵗʰ↓ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ= ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩
⟨⋯ 0 ⋯ ? 5 ⋯ (?+2)⟩ (?≠3)
⛔Avoid
⟨ ⁶ᵗʰa ³ʳᵈb ¹ˢᵗc ⟩, (abc)₁₀ ≤ 346
#125034_v2.7
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ 3 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 1 │ │ 3 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 1 │ │ 3 │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 1 │ 0 │ 3 │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 1 │ 0 │ 3 │ 2 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 1 │ 0 │ 3 │ 2 │ 5 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 6 │ 1 │ 0 │ 3 │ 2 │ 5 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-11-19 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Consider the "=" positions of ✅「⟨ ⁶ᵗʰ↓ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ= ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩」. Plainly, we need [3rd] = 3. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ 3 │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ The preceding pattern also implies (1) {[5th], [1st]} = {0,6} | {1,5} | {2,4}. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ ▬ │ │ 3 │ │ ▬ │ │ └───┴───┴───┴───┴───┴───┴───┘ On the other hand, by ✅「⟨⋯ 0 ⋯ ? 5 ⋯ (?+2)⟩ (?≠3)」, one of the following holds: (2) ⟨⋯ 05 ⋯ 2⟩; (3) ⟨⋯ 25 ⋯ 4⟩; (4) ⟨⋯ 45 ⋯ 6⟩. (5) Based on (1), we proceed to show that {[5th], [1st]} = {1,5}. ------------------------------ (5.1) If {[5th], [1st]} = {0,6}, then to match ✅「⟨⋯ 0 ⋯ ? 5 ⋯ (?+2)⟩ (?≠3)」, we need ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ │ 3 │ │ 6 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, noting that cases (3) and (4) are not possible, case (2) holds and we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ 5 │ 3 │ │ 6 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ But then it cannot match the 4th position of ✅「⟨ ⁶ᵗʰ↓ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ= ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩」, which is a contradiction. (5.2) Else, suppose {[5th], [1st]} = {2,4}: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ ▬ │ │ 3 │ │ ▬ │ │ └───┴───┴───┴───┴───┴───┴───┘ then (2) and (3) are not possible, so (4) holds and we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│ 4▲│3rd│2nd│ 1▲│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 4 │ 5 │ 3 │ │ 2 │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ In view of ✅「⟨⋯ 0 ⋯ ? 5 ⋯ (?+2)⟩ (?≠3)」, 0 is to the left of 5, so we reach ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 4 │ 5 │ 3 │ 1 │ 2 │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ It does not match the 6th position of ✅「⟨ ⁶ᵗʰ↓ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ= ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩」, however. ------------------------------ We have verified (5). Consequently, one of the following holds: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (6) │ │ 1 │ │ 3 │ │ 5 │ │ ├───┼───┼───┼───┼───┼───┼───┤ (7) │ │ 5 │ │ 3 │ │ 1 │ │ └───┴───┴───┴───┴───┴───┴───┘ Case (6) holds actually, for otherwise by ✅「⟨⋯ 0 ⋯ ? 5 ⋯ (?+2)⟩ (?≠3)」, we have ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 5 │ │ 3 │ │ 1 │ │ └───┴───┴───┴───┴───┴───┴───┘ and it does not match the 6th position of ✅「⟨ ⁶ᵗʰ↓ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ= ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩」. Therefore, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ 3 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 1 │ │ 3 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 1 │ │ 3 │ │ 5 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Next, we consider where to place 0. It cannot be at a "↓" position of ✅「⟨ ⁶ᵗʰ↓ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ= ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩」, so (8) 0 = [4th] | [2nd]. (9) We show that 0 = [4th] indeed. ------------------------------ For, suppose on the contrary 0 = [2nd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ 3 │ 0 │ 5 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then ✅「⟨⋯ 0 ⋯ ? 5 ⋯ (?+2)⟩ (?≠3)」 gives [0th] = 2: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ 3 │ 0 │ 5 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ and ✅「6th|5th|2nd|0th → 4」 gives [6th] = 4: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ 1 │ │ 3 │ 0 │ 5 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ This is a contradiction because it does not match the 6th position of ✅「⟨ ⁶ᵗʰ↓ ⁵ᵗʰ= ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↑ ¹ˢᵗ= ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩」. ------------------------------ We have verified (9) and get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ │ 3 │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 1 │ 0 │ 3 │ │ 5 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Now, recall to one of (2), (3), (4) holds. Plainly, case (2) does not hold. If case (4) holds, then we cannot avoid ⛔「⟨ ⁶ᵗʰa ³ʳᵈb ¹ˢᵗc ⟩, (abc)₁₀ ≤ 346」. Therefore, case (3) holds. We finish by ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│ 2■│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ 0 │ 3 │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 1 │ 0 │ 3 │ 2 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 1 │ 0 │ 3 │ 2 │ 5 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 6 │ 1 │ 0 │ 3 │ 2 │ 5 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.7
No comments:
Post a Comment