Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ⁶ᵗʰd ⁵ᵗʰa ⁴ᵗʰc ²ⁿᵈb ⟩, a > b > c > d
⟦1,4⟧ ∋ 2,5
4th → 2|6
3rd → a, 1st → b, ab=3+4n
#125034_v2.7
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 2 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 2 │ │ 4 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ 2 │ │ 4 │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ │ 2 │ │ 4 │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ │ 2 │ 5 │ 4 │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 6 │ 2 │ 5 │ 4 │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 6 │ 2 │ 5 │ 4 │ 3 │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-11-12 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Firstly, by combining ✅「4th → 2|6」 with ✅「⟨ ⁶ᵗʰd ⁵ᵗʰa ⁴ᵗʰc ²ⁿᵈb ⟩, a > b > c > d」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 2 │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, observe that ✅「3rd → a, 1st → b, ab=3+4n」 implies (1) {[3rd], [1st]} = {1,3} | {3,5}. A fortiori (2) 3 ∈ {[3rd], [1st]}. On the other hand, to match ✅「⟨ ⁶ᵗʰd ⁵ᵗʰa ⁴ᵗʰc ²ⁿᵈb ⟩, a > b > c > d」, we need (3) [2nd] = 3|4|5. In view of (2), it is [2nd] = 4|5 actually. (4) Below we show that [2nd] = 4. ------------------------------ If on the contrary [2nd] = 5: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 2 │ │ 5 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ then ✅「⟨ ⁶ᵗʰd ⁵ᵗʰa ⁴ᵗʰc ²ⁿᵈb ⟩, a > b > c > d」 implies [5th] = 6 and [6th] = 0|1: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 6 │ 2 │ │ 5 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ However, this is a contradiction. For, if [6th] = 0, then we cannot match ✅「⟦1,4⟧ ∋ 2,5」, else if [6th] = 1, then we cannot match (1). ------------------------------ We have verified in (4). Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 2 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 2 │ │ 4 │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「⟦1,4⟧ ∋ 2,5」, we need (5) 1 and 5 are to the left of 4. Combining (5) with (1), we get [1st] = 3: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 2 │ │ 4 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ 2 │ │ 4 │ 3 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, by ✅「⟨ ⁶ᵗʰd ⁵ᵗʰa ⁴ᵗʰc ²ⁿᵈb ⟩, a > b > c > d」, we have [6th] = 0|1. (6) We show that [6th] = 1 actually. ------------------------------ If instead [6th] = 0, then to match ✅「⟦1,4⟧ ∋ 2,5」 we need [5th] = 1: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ │ 2 │ │ 4 │ 3 │ │ ├───┼───┼───┼───┼───┼───┼───┤ │ 0 │ 1 │ 2 │ │ 4 │ 3 │ │ └───┴───┴───┴───┴───┴───┴───┘ But then we cannot match ✅「⟨ ⁶ᵗʰd ⁵ᵗʰa ⁴ᵗʰc ²ⁿᵈb ⟩, a > b > c > d」, which is a contradiction. ------------------------------ It follows from (6) that ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 2 │ │ 4 │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ │ 2 │ │ 4 │ 3 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, (1) gives ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ │ 2 │ │ 4 │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ │ 2 │ 5 │ 4 │ 3 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, using ✅「⟨ ⁶ᵗʰd ⁵ᵗʰa ⁴ᵗʰc ²ⁿᵈb ⟩, a > b > c > d」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ │ 2 │ 5 │ 4 │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ │ 1 │ 6 │ 2 │ 5 │ 4 │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 6 │ 2 │ 5 │ 4 │ 3 │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.7
No comments:
Post a Comment