Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 6 ⋯ 0 ⋯⟩
⟨⋯ Perm(0,1,4) ⋯⟩
Jump(4,5) = 1
5th → a, 1st → b, ab=0
⛔Avoid
Jump(2,3) ≥ 2
min ⊢3⊣ ≥ 2
⟨⋯ 2 ⋯ 6 ⋯⟩
#125034_v2.6
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ 1 │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ 1 │ 4 │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ 3 │ 1 │ 4 │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ │ 3 │ 1 │ 4 │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 6 │ │ 3 │ 1 │ 4 │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 6 │ 2 │ 3 │ 1 │ 4 │ 0 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-10-08 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. We begin with an observation. To avoid ⛔「min ⊢3⊣ ≥ 2」, we need (1) 3 is adjacent to 1 or 0. We start the proof. By ✅「5th → a, 1st → b, ab=0」, we have 0 = [5th] | [1st]. (2) We claim that 0 = [1st]. ------------------------------ For, suppose on the contrary 0 = [5th]. By ✅「⟨⋯ 6 ⋯ 0 ⋯⟩」, we have ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 6 │ 0 │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, in view of ✅「⟨⋯ Perm(0,1,4) ⋯⟩」 and ✅「Jump(4,5) = 1」, two cases follow: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│ 3▲│ 2▲│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (3) │ 6 │ 0 │ 1 │ 4 │ │ 5 │ │ ├───┼───┼───┼───┼───┼───┼───┤ (4) │ 6 │ 0 │ 4 │ 1 │ 5 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Both cases give contradiction, however, as we have to match (1). ------------------------------ We have verified our claim in (2). Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 0 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, by ✅「⟨⋯ Perm(0,1,4) ⋯⟩」, there are two possibilities: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (5) │ │ │ │ │ ▬ │ 0 │ ▬ │ ├───┼───┼───┼───┼───┼───┼───┤ (6) │ │ │ │ ▬ │ ▬ │ 0 │ │ └───┴───┴───┴───┴───┴───┴───┘ where "▬" are occupied by 1,4. If case (5) holds, then (1) implies ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ 1 │ 0 │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ But then we cannot match ✅「Jump(4,5) = 1」. Therefore, case (5) does not hold and case (6) holds instead. Then, in view of (1), there are three cases: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│ 3▲│ 2▲│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (7) │ │ │ │ 4 │ 1 │ 0 │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ (8) │ │ │ │ 1 │ 4 │ 0 │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ (9) │ │ │ 3 │ 1 │ 4 │ 0 │ │ └───┴───┴───┴───┴───┴───┴───┘ Note that if case (7) or (8) holds, then we cannot avoid ⛔「Jump(2,3) ≥ 2」. Therefore, case (9) holds actually. We get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ 1 │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ 1 │ 4 │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ 3 │ 1 │ 4 │ 0 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, by ✅「Jump(4,5) = 1」, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 3 │ 1 │ 4 │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ │ 3 │ 1 │ 4 │ 0 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, in view of ⛔「⟨⋯ 2 ⋯ 6 ⋯⟩」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 3 │ 1 │ 4 │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 6 │ │ 3 │ 1 │ 4 │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 6 │ 2 │ 3 │ 1 │ 4 │ 0 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.6
No comments:
Post a Comment