Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
Jump(2,3) = 2
6th → a, 5th → b, |a-b|=3
⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↓ ⁴ᵗʰ↑ ³ʳᵈ↑ ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩
5th → a, 0th → b, a+b=0+5n
5th → a, 2nd → b, a+b=7
#125034_v2.6
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 6 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 6 │ │ │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ 6 │ │ │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 6 │ │ │ 1 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 6 │ │ 2 │ 1 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 6 │ 0 │ 2 │ 1 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 6 │ 0 │ 2 │ 1 │ 5 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-10-01 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「5th → a, 2nd → b, a+b=7」, there are six possibilities for ([5th], [2nd]): (A) (1,6) (B) (2,5) (C) (3,4) (D) (4,3) (E) (5,2) (F) (6,1) ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ ▬ │ │ │ ▬ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Observing that in order to match ✅「Jump(2,3) = 2」, case (B)-(E) do not hold. Case (A) also does not hold, for otherwise we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ │ 6 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ and then we cannot have a "↓" at 5th after 6−⟨⇌⟩, contradicting ✅「⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↓ ⁴ᵗʰ↑ ³ʳᵈ↑ ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩」. Therefore, case (F) holds. We get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 6 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 6 │ │ │ 1 │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, it follows from ✅「6th → a, 5th → b, |a-b|=3」 that [6th] = 3: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 6 │ │ │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ 6 │ │ │ 1 │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Using ✅「5th → a, 0th → b, a+b=0+5n」 and ✅「Jump(2,3) = 2」, we get [0th] = 4 and [3rd] = 2 as well: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 6 │ │ │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 6 │ │ │ 1 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 6 │ │ 2 │ 1 │ │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, since 0 cannot be at a "↓" position of ✅「⟨ ⁶ᵗʰ↓ ⁵ᵗʰ↓ ⁴ᵗʰ↑ ³ʳᵈ↑ ²ⁿᵈ↑ ¹ˢᵗ↓ ⁰ᵗʰ↓ ⟩ after 6−⟨⇌⟩」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 6 │ │ 2 │ 1 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 6 │ 0 │ 2 │ 1 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 6 │ 0 │ 2 │ 1 │ 5 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.6
No comments:
Post a Comment