Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
6th → a, 4th → b, ab=2+6n
⟨⋯ ? ⋯ 0 ⋯ (?+3)⟩ (?≠0)
⟨⋯ 1 ⋯ 4 ⋯ 2 ⋯ 3 ⋯⟩
Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ4 ⁴ᵗʰ0 ³ʳᵈ2 ²ⁿᵈ1 ¹ˢᵗ6 ⁰ᵗʰ3 ⟩ = 2
⛔Avoid
⟨ ⁶ᵗʰa ⁵ᵗʰb ⟩, max⟦a,b⟧ = 5
⟨⋯ 2 ⋯ ? 6 ⋯ (?+2)⟩ (?≠4)
#125034_v2.6
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 4 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 1 │ 4 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 1 │ 4 │ 2 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 4 │ 2 │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 4 │ 2 │ │ │ 6 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 4 │ 2 │ 3 │ │ 6 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 4 │ 2 │ 3 │ 0 │ 6 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-09-24 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「⟨⋯ 1 ⋯ 4 ⋯ 2 ⋯ 3 ⋯⟩」, 4 is not at the right corner. Therefore, ✅「⟨⋯ ? ⋯ 0 ⋯ (?+3)⟩ (?≠0)」 implies one of the following holds: (1) (a) ⟨⋯ 2 ⋯ 0 ⋯ 5⟩; or (b) ⟨⋯ 3 ⋯ 0 ⋯ 6⟩. Combining this with ✅「⟨⋯ 1 ⋯ 4 ⋯ 2 ⋯ 3 ⋯⟩」, we see that no matter which case happens, there are at least four digits at the right of 4, and at least one digit at the left of 4. So, 4 = [5th] or [4th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ ▬ │ ▬ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ (2) We show that 4 = [5th] actually. ------------------------------ Suppose on the contrary 4 = [4th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 4 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, by ✅「6th → a, 4th → b, ab=2+6n」, we have [6th] = 2|5. This is a contradiction however, because (2.1) if [6th] = 2, then we cannot match ✅「⟨⋯ 1 ⋯ 4 ⋯ 2 ⋯ 3 ⋯⟩」: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ 4 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ (2.2) Else if [6th] = 5, then to match ✅「⟨⋯ 1 ⋯ 4 ⋯ 2 ⋯ 3 ⋯⟩」 we need [5th] = 1: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 5 │ 1 │ 4 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ but then we match ⛔「⟨ ⁶ᵗʰa ⁵ᵗʰb ⟩, max⟦a,b⟧ = 5」. ------------------------------ We have verified our claim in (2). Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 4 │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, using ✅「⟨⋯ 1 ⋯ 4 ⋯ 2 ⋯ 3 ⋯⟩」, we get [6th] = 1. By ✅「6th → a, 4th → b, ab=2+6n」, we get [4th] = 2 as well: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 4 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 1 │ 4 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 1 │ 4 │ 2 │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ To continue, we consider ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ4 ⁴ᵗʰ0 ³ʳᵈ2 ²ⁿᵈ1 ¹ˢᵗ6 ⁰ᵗʰ3 ⟩ = 2」. To match it, we need exactly one of the following: (3) (a) [1st] = 6; or (b) [0th] = 3. Observe that (3) cannot happen if case (1)(b) holds. Therefore, case (1)(a) holds, and we get [0th] = 5: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 4 │ 2 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 4 │ 2 │ │ │ │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Case (3)(b) becomes impossible. So, case (3)(a) holds: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 4 │ 2 │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 4 │ 2 │ │ │ 6 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨⋯ 2 ⋯ ? 6 ⋯ (?+2)⟩ (?≠4)」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 4 │ 2 │ │ │ 6 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 4 │ 2 │ 3 │ │ 6 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 4 │ 2 │ 3 │ 0 │ 6 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.6
No comments:
Post a Comment