Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ⁵ᵗʰd ⁴ᵗʰc ²ⁿᵈb ¹ˢᵗa ⟩, a > b > c > d
4th → a, 0th → b, a+b=3+5n
⛔Avoid
6th|5th|2nd|1st|0th → 5
⟨⋯ 2 ⋯ 3 ⋯⟩
{p6, p5, p4, p0} = ? + {0,1,2,3}
⟨ ⁶ᵗʰa ⁵ᵗʰc ¹ˢᵗb ⟩, a > b > c
#125034_v2.6
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ 5 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 0 │ │ 5 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 0 │ 1 │ 5 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 0 │ 1 │ 5 │ │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 0 │ 1 │ 5 │ 3 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 0 │ 1 │ 5 │ 3 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 0 │ 1 │ 5 │ 3 │ 6 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-09-03 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. To begin with, we consider where to place 5. By ⛔「6th|5th|2nd|1st|0th → 5」, we have (1) 5 = [4th] | [3rd]. In view of ✅「⟨ ⁵ᵗʰd ⁴ᵗʰc ²ⁿᵈb ¹ˢᵗa ⟩, a > b > c > d」, we cannot place 5 at 4th. Therefore, 5 = [3rd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ 5 │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Next, we consider the required pattern ✅「4th → a, 0th → b, a+b=3+5n」. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ ▬ │ 5 │ │ │ ▬ │ └───┴───┴───┴───┴───┴───┴───┘ Note that it implies [4th] + [0th] = 3|8. There are three possibilities for {[4th], [0th]}: (i) {[4th], [0th]} = {2,6}; (ii) {[4th], [0th]} = {0,3}; (iii) {[4th], [0th]} = {1,2}. (2) We show that case (iii) holds indeed. ------------------------------ (2.1) Suppose case (i) holds. Since ✅「⟨ ⁵ᵗʰd ⁴ᵗʰc ²ⁿᵈb ¹ˢᵗa ⟩, a > b > c > d」 implies [4th] != 6, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 2 │ 5 │ │ │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 3 │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ To match ✅「⟨ ⁵ᵗʰd ⁴ᵗʰc ²ⁿᵈb ¹ˢᵗa ⟩, a > b > c > d」, we then need ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 2 │ 5 │ 3 │ 4 │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ But then we match ⛔「⟨⋯ 2 ⋯ 3 ⋯⟩」, which is a contradiction. So, case (i) does not hold. (2.2) Suppose case (ii) holds instead. Since ✅「⟨ ⁵ᵗʰd ⁴ᵗʰc ²ⁿᵈb ¹ˢᵗa ⟩, a > b > c > d」 implies [4th] != 0, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 3 │ 5 │ │ │ 0 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ To match ✅「⟨ ⁵ᵗʰd ⁴ᵗʰc ²ⁿᵈb ¹ˢᵗa ⟩, a > b > c > d」, we then have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 3 │ 5 │ 4 │ 6 │ 0 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Again we would match ⛔「⟨⋯ 2 ⋯ 3 ⋯⟩」. So case (ii) also does not hold. ------------------------------ By (2.1) and (2.2), we have verified our claim in (2). Accordingly, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ ▬ │ 5 │ │ │ ▬ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ where "▬" are occupied by 1,2. Therefore, since [5th] < [4th] by ✅「⟨ ⁵ᵗʰd ⁴ᵗʰc ²ⁿᵈb ¹ˢᵗa ⟩, a > b > c > d」, we get [5th] = 0: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ 5 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 0 │ ▬ │ 5 │ │ │ ▬ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ (3) Now, we claim that ([4th], [0th]) = (1,2). ------------------------------ For, if on the contrary ([4th], [0th]) = (2,1): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ 2 │ 5 │ │ │ 1 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ then, to avoid ⛔「⟨⋯ 2 ⋯ 3 ⋯⟩」, we need ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 0 │ 2 │ 5 │ │ │ 1 │ └───┴───┴───┴───┴───┴───┴───┘ But then we would match ⛔「{p6, p5, p4, p0} = ? + {0,1,2,3}」, which is a contradiction. ------------------------------ Hence, by (3), we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ │ 5 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 0 │ 1 │ 5 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 0 │ 1 │ 5 │ │ │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, we consider how to place 3. To avoid ⛔「{p6, p5, p4, p0} = ? + {0,1,2,3}」, it is not at 6th. On the other hand, since 3 is the smallest idle digit, by ✅「⟨ ⁵ᵗʰd ⁴ᵗʰc ²ⁿᵈb ¹ˢᵗa ⟩, a > b > c > d」, it is not at 1st. Therefore, we have 3 = [2nd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ 1 │ 5 │ │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 0 │ 1 │ 5 │ 3 │ │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨ ⁶ᵗʰa ⁵ᵗʰc ¹ˢᵗb ⟩, a > b > c」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ 1 │ 5 │ 3 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 0 │ 1 │ 5 │ 3 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 0 │ 1 │ 5 │ 3 │ 6 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.6
No comments:
Post a Comment