Web link

2024-09-03 Q1(m=6)

Rearrange the digits in ⟨1263045⟩ to meet the rules below.

⟨6th 5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨   ⁵ᵗʰd ⁴ᵗʰc   ²ⁿᵈb ¹ˢᵗa   ⟩, a > b > c > d
4th → a, 0th → b, a+b=3+5n

⛔Avoid
6th|5th|2nd|1st|0th → 5
⟨⋯ 2 ⋯ 3 ⋯⟩
{p6, p5, p4, p0} = ? + {0,1,2,3}
⟨ ⁶ᵗʰa ⁵ᵗʰc       ¹ˢᵗb   ⟩, a > b > c

#125034_v2.6


       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │ 5 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 0 │   │ 5 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 0 │ 1 │ 5 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 0 │ 1 │ 5 │   │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │   │ 0 │ 1 │ 5 │ 3 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 0 │ 1 │ 5 │ 3 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 4 │ 0 │ 1 │ 5 │ 3 │ 6 │ 2 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2024-09-03 Q1(m=6)
═══════════════════════════

Notation: if nth -> a, then we write [nth] = a.

To begin with, we consider where to place 5. By ⛔「6th|5th|2nd|1st|0th → 5」, we have 

(1) 5 = [4th] | [3rd].

In view of ✅「⟨   ⁵ᵗʰd ⁴ᵗʰc   ²ⁿᵈb ¹ˢᵗa   ⟩, a > b > c > d」, we cannot place 5 at 4th. Therefore, 5 = [3rd]:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │ 5 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 6 │ 3 │ 0 │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

Next, we consider the required pattern ✅「4th → a, 0th → b, a+b=3+5n」.

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4▲│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ ▬ │ 5 │   │   │ ▬ │
└───┴───┴───┴───┴───┴───┴───┘

Note that it implies [4th] + [0th] = 3|8. There are three possibilities for {[4th], [0th]}:

(i) {[4th], [0th]} = {2,6};

(ii) {[4th], [0th]} = {0,3};

(iii) {[4th], [0th]} = {1,2}.

(2) We show that case (iii) holds indeed.

------------------------------

(2.1) Suppose case (i) holds. Since ✅「⟨   ⁵ᵗʰd ⁴ᵗʰc   ²ⁿᵈb ¹ˢᵗa   ⟩, a > b > c > d」 implies [4th] != 6, we have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4▲│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 2 │ 5 │   │   │ 6 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 3 │ 0 │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

To match ✅「⟨   ⁵ᵗʰd ⁴ᵗʰc   ²ⁿᵈb ¹ˢᵗa   ⟩, a > b > c > d」, we then need

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│ 2▲│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 2 │ 5 │ 3 │ 4 │ 6 │
└───┴───┴───┴───┴───┴───┴───┘

But then we match ⛔「⟨⋯ 2 ⋯ 3 ⋯⟩」, which is a contradiction. So, case (i) does not hold.

(2.2) Suppose case (ii) holds instead. Since ✅「⟨   ⁵ᵗʰd ⁴ᵗʰc   ²ⁿᵈb ¹ˢᵗa   ⟩, a > b > c > d」 implies [4th] != 0, we have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4▲│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 3 │ 5 │   │   │ 0 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 6 │   │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

To match ✅「⟨   ⁵ᵗʰd ⁴ᵗʰc   ²ⁿᵈb ¹ˢᵗa   ⟩, a > b > c > d」, we then have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│ 2▲│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 3 │ 5 │ 4 │ 6 │ 0 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Again we would match ⛔「⟨⋯ 2 ⋯ 3 ⋯⟩」. So case (ii) also does not hold.

------------------------------

By (2.1) and (2.2), we have verified our claim in (2). Accordingly, we have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4▲│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ ▬ │ 5 │   │   │ ▬ │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │ 3 │ 0 │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

where "▬" are occupied by 1,2.

Therefore, since [5th] < [4th] by ✅「⟨   ⁵ᵗʰd ⁴ᵗʰc   ²ⁿᵈb ¹ˢᵗa   ⟩, a > b > c > d」, we get [5th] = 0:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │ 5 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 0 │ ▬ │ 5 │   │   │ ▬ │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │ 3 │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

(3) Now, we claim that ([4th], [0th]) = (1,2).

------------------------------

For, if on the contrary ([4th], [0th]) = (2,1):

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4▲│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │ 2 │ 5 │   │   │ 1 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │ 3 │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

then, to avoid ⛔「⟨⋯ 2 ⋯ 3 ⋯⟩」, we need

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 3 │ 0 │ 2 │ 5 │   │   │ 1 │
└───┴───┴───┴───┴───┴───┴───┘

But then we would match ⛔「{p6, p5, p4, p0} = ? + {0,1,2,3}」, which is a contradiction.

------------------------------

Hence, by (3), we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│ 4■│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 0 │   │ 5 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 0 │ 1 │ 5 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 0 │ 1 │ 5 │   │   │ 2 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │ 3 │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

Then, we consider how to place 3. To avoid ⛔「{p6, p5, p4, p0} = ? + {0,1,2,3}」, it is not at 6th. On the other hand, since 3 is the smallest idle digit, by ✅「⟨   ⁵ᵗʰd ⁴ᵗʰc   ²ⁿᵈb ¹ˢᵗa   ⟩, a > b > c > d」, it is not at 1st. Therefore, we have 3 = [2nd]:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 0 │ 1 │ 5 │   │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │   │ 0 │ 1 │ 5 │ 3 │   │ 2 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │   │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨ ⁶ᵗʰa ⁵ᵗʰc       ¹ˢᵗb   ⟩, a > b > c」, we finish by 

       ┌───┬───┬───┬───┬───┬───┬───┐
       │ 6■│5th│4th│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 0 │ 1 │ 5 │ 3 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 0 │ 1 │ 5 │ 3 │   │ 2 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 4 │ 0 │ 1 │ 5 │ 3 │ 6 │ 2 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.6

No comments:

Post a Comment