Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 0 ⋯ 4 ⋯⟩
⟨⋯ Perm(0,5) ⋯⟩
⟨⋯ Perm(2,3,6) ⋯⟩
Sim⟨ ⁶ᵗʰ4 ⁵ᵗʰ3 ⁴ᵗʰ6 ³ʳᵈ5 ²ⁿᵈ1 ¹ˢᵗ2 ⁰ᵗʰ0 ⟩ = 1
⛔Avoid
max ⊢2⊣ ≥ 4
5th|4th|3rd|2nd|0th → 0
⟨⋯ 0 ⋯ ? ⋯ 1 (?−1)⟩ (?≠1,2)
4th → a, 1st → b, ab=8
#125034_v2.6
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ │ 5 │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 6 │ │ │ │ 5 │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 6 │ 3 │ │ │ 5 │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 6 │ 3 │ 2 │ │ 5 │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 6 │ 3 │ 2 │ 1 │ 5 │ 0 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-08-27 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. We begin with an observation. As ⛔「max ⊢2⊣ ≥ 4」 implies that 2 and 6 are not adjacent, so in view of ✅「⟨⋯ Perm(2,3,6) ⋯⟩」, we have the following required pattern: (1) ⟨⋯ 2 3 6 ⋯⟩ or ⟨⋯ 6 3 2 ⋯⟩. We consider where to place 0. By ⛔「5th|4th|3rd|2nd|0th → 0」, we have 0 = [6th] | [1st]. (2) We claim that 0 = [1st] actually. ------------------------------ For, suppose on the contrary 0 = [6th]. Combining this with ✅「⟨⋯ Perm(0,5) ⋯⟩」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 5 │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ To match ✅「Sim⟨ ⁶ᵗʰ4 ⁵ᵗʰ3 ⁴ᵗʰ6 ³ʳᵈ5 ²ⁿᵈ1 ¹ˢᵗ2 ⁰ᵗʰ0 ⟩ = 1」 as well, we need to have exactly one positional digit agreed with ⟨4365120⟩. There are three choices: (i) 6 = [4th]; (ii) 1 = [2nd]; (iii) 2 = [1st]. If case (ii) holds, then we do not have three consecutive boxes for (1): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 5 │ │ │ 1 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ which is a contradiction. So, case (i) or (iii) holds instead. Combining them with (1) respectively, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (3.1) │ 0 │ 5 │ 6 │ 3 │ 2 │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ (3.2) │ 0 │ 5 │ │ 6 │ 3 │ 2 │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ By ⛔「max ⊢2⊣ ≥ 4」, 2 and 4 are not adjacent, so the above become ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (3.3) │ 0 │ 5 │ 6 │ 3 │ 2 │ 1 │ 4 │ ├───┼───┼───┼───┼───┼───┼───┤ (3.4) │ 0 │ 5 │ 4 │ 6 │ 3 │ 2 │ 1 │ └───┴───┴───┴───┴───┴───┴───┘ This is a contradiction, however, as case (3.3) matches ⛔「⟨⋯ 0 ⋯ ? ⋯ 1 (?−1)⟩ (?≠1,2)」 while case (3.4) matches ⛔「4th → a, 1st → b, ab=8」. ------------------------------ We have verified our claim in (2). Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 0 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「⟨⋯ 0 ⋯ 4 ⋯⟩」 and ✅「⟨⋯ Perm(0,5) ⋯⟩」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ │ 5 │ 0 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ We consider ✅「Sim⟨ ⁶ᵗʰ4 ⁵ᵗʰ3 ⁴ᵗʰ6 ³ʳᵈ5 ²ⁿᵈ1 ¹ˢᵗ2 ⁰ᵗʰ0 ⟩ = 1」 again. To have exactly one agreed positional digit, we need (I) 3 = [5th] and 6 != [4th]; or (II) 3 != [5th] and 6 = [4th]. Observe that by (1), case (I) holds actually. We finish by ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│ 5■│ 4■│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ 5 │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 6 │ │ │ │ 5 │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 6 │ 3 │ │ │ 5 │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 6 │ 3 │ 2 │ │ 5 │ 0 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 6 │ 3 │ 2 │ 1 │ 5 │ 0 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.6
No comments:
Post a Comment